纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 148-153.doi: 10.13475/j.fzxb.20211007606

• 服装工程 • 上一篇    下一篇

羽绒服装系统的面积因子预测及适用性分析

张文欢1, 江舒1, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2021-10-29 修回日期:2022-08-08 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 李俊
  • 作者简介:张文欢(1993—),女,博士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    中央高校基本科研业务费专项基金资助项目(2232022G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Applicability analysis and calculation of clothing area factor in down jacket clothing ensembles

ZHANG Wenhuan1, JIANG Shu1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-10-29 Revised:2022-08-08 Published:2022-11-15 Online:2022-12-26
  • Contact: LI Jun

摘要:

为合理评价羽绒服装系统的热湿舒适性,准确获取服装的面积因子,利用手持式三维扫描仪对12套羽绒服装系统进行扫描并计算。通过相关性分析确定了服装设计参数(总充绒量、长度)、服装热物理性能(固有热阻和总热阻)与面积因子的相关关系,并基于各影响因素建立了面积因子预测模型。以固有热阻预测面积因子方法作为切入点,探讨了标准数据库中面向轻薄服装的面积因子计算方法在羽绒服装系统中的适用性,并进一步考察了总热阻预测面积因子方法的有效性。结果表明:羽绒服总充绒量与面积因子具有显著相关关系,且长度的作用依赖于单位面积充绒量;相较于固有热阻预测面积因子的方法,总热阻预测法具有更高的预测准确性。

关键词: 服装面积因子, 羽绒服, 固有热阻, 总热阻, 三维扫描

Abstract:

In order to effectively evaluate the thermal and moist comfort of down clothing ensembles and accurately obtain clothing area factor, naked and clothed human bodies with 12 sets of down clothing systems were scanned by 3-D body scanner. Using Pearson analysis method, the correlational relationship between area factor and clothing design parameters (total filling of down, clothing length) and clothing thermal physical properties (intrinsic and total thermal insulation) were analyzed and the regression equations were established based on each influencing factor. The applicability of the area factor and the calculation method were discussed for down clothing systems using the predicted method for inherent thermal insulation and total thermal insulation. The results indicates that there is significant correlation between the total filling of down and the area factor, and that the effectiveness of length depends on down filling amount. Compared with the method of predicting the area factor of the inherent thermal insulation, the predicted values with total thermal insulation are more accurate.

Key words: clothing area factor, down jacket, inherent thermal insulation, total thermal insulation, 3-D scan

中图分类号: 

  • TS941.73

表1

羽绒服装的具体参数"

服装编号 总充绒量/
g
单位面积充绒量/
(g·m2)
长度/
m
ES 1 157 135 0.70
ES 2 180 135 0.85
ES 3 146 120 0.79
ES 4 199 135 0.97
ES 5 177 135 0.84
ES 6 182 135 0.85
ES 7 216 135 1.08
ES 8 164 115 0.94
ES 9 274 180 0.92
ES 10 234 135 1.20
ES 11 211 135 1.05
ES 12 291 180 1.06

表2

面积因子标准化预测方法的相关系数"

标准编号 a b
ISO 11079—2007/ISO 7933—2004 0.305 1.00
ISO 9920—2009 0.281 1.000
ISO 7730—2005 0.255 1.050

表3

所有服装的总热阻、固有热阻和面积因子结果"

服装编号 总热阻/clo 固有热阻/clo 面积因子
ES 1 1.59 1.22 1.15
ES 2 1.71 1.37 1.24
ES 3 1.79 1.45 1.24
ES 4 1.87 1.53 1.25
ES 5 1.95 1.61 1.26
ES 6 2.00 1.67 1.30
ES 7 2.00 1.67 1.29
ES 8 2.10 1.78 1.35
ES 9 2.11 1.81 1.43
ES 10 2.17 1.84 1.32
ES 11 2.26 1.93 1.30
ES 12 2.26 1.96 1.44

表4

服装结构参数与面积因子的皮尔逊相关分析结果"

类别 长度 总充绒量
相关性 0.56 0.81
Sig.(2-tailed) 0.06 0.00

图1

服装结构参数与面积因子的量化关系"

表5

服装热阻与面积因子的皮尔逊相关分析结果"

类别 固有热阻 总热阻
相关性 0.86 0.83
Sig.(2-tailed) 0.00 0.00

图2

服装面积因子测量值及标准方法预测值"

图3

面积因子的实测值和非标准化预测值"

表6

非标准化面积因子预测方法的均方根误差和乖离率"

预测模型
名称
均方根误差 乖离率
Icl方法 It方法 Icl方法 It方法
Patty 0.072 / -0.046 /
Subzero 0.102 0.068 -0.076 -0.034
Kuklane 0.299 0.058 -0.262 0.003
Zhang 0.049 0.055 0.002 0.003
[1] FU M, WENG W, CHEN W, et al. Review on modeling heat transfer and thermoregulatory responses in human body[J]. Journal of Thermal Biology, 2016, 62: 189-200.
doi: S0306-4565(16)30016-X pmid: 27888933
[2] KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: a systematic comparison[J]. Indoor Air, 2017, 27(3): 680-689.
doi: 10.1111/ina.12329 pmid: 27564215
[3] KOELBLEN B, PSIKUTA A, BOGDAN A, et al. Thermal sensation models: validation and sensitivity towards thermo-physiological parameters[J]. Building and Environment, 2018, 130: 200-211.
doi: 10.1016/j.buildenv.2017.12.020
[4] ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410.
doi: 10.1016/j.buildenv.2009.06.020
[5] ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388.
doi: 10.1016/j.buildenv.2009.06.018
[6] 陈扬, 杨允出, 张艺强, 等. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(5): 49-55.
CHEN Yang, YANG Yunchu, ZHANG Yiqiang, et al. Simulation of steady heat transfer on fabrics system embedded with heating unit in electrically heated clothing[J]. Journal of Textile Research, 2018, 39 (5): 49-55.
doi: 10.1177/004051756903900109
[7] XU J, PSIKUTA A, LI J, et al. Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions[J]. Building and Environment, 2021, 196: 1-16.
[8] KATIĆ K, LI R, ZEILER W. Thermophysiological models and their applications: a review[J]. Building and Environment, 2016, 106: 286-300.
doi: 10.1016/j.buildenv.2016.06.031
[9] VESELÁ S, KINGMA B R M, FRIJNS A J H. Local thermal sensation modeling: a review on the necessity and availability of local clothing properties and local metabolic heat production[J]. Indoor Air, 2017, 27(2): 261-272.
doi: 10.1111/ina.12324
[10] HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[J]. Comprehensive Physiology, 2016, 6(1): 255-302.
[11] 王云仪, 张雪, 李小辉, 等. 基于 Geomagic 软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 31-35.
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Feature extraction of air layer under burning dummies based on geomagic software[J]. Journal of Textile Research, 2012, 33(11): 31-35.
[12] VESELÁ S, PSIKUTA A, FRIJNS A J H. Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions[J]. International Journal of Biometeorology, 2018, 62(12): 2215-2229.
doi: 10.1007/s00484-018-1625-0 pmid: 30374599
[13] KUKLANE K, TOMA R. Common clothing area factor estimation equations are inaccurate for highly insula-ting (Icl>2 clo) and non-western loose-fitting clothing ensembles[J]. Industrial Health, 2021, 59(2): 107-116.
doi: 10.2486/indhealth.2020-0209
[14] 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(9): 137-142.
WANG Shitan, WANG Xiuhua, WANG Yunyi. Determination of undergarment clearance characteristic index and its application in fitting evaluation of one-sies[J]. Journal of Textile Research, 2021, 42(9): 137-142.
doi: 10.1177/004051757204200301
[15] MERT E, BÖHNISCH S, PSIKUTA A, et al. Contribution of garment fit and style to thermal comfort at the lower body[J]. International Journal of Biometeorology, 2016, 60(12): 1995-2004.
pmid: 27757698
[16] KUKLANE K, TOMA R. Validation of ISO 9920 clothing item insulation summation method based on an ambulance personnel clothing system[J]. Industrial Health, 2021, 59(1): 27-33.
doi: 10.2486/indhealth.2020-0208 pmid: 33191316
[17] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1): 167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress on heat transfer mechanism of air layer in firefighting clothing[J]. Journal of Textile Research, 2016, 37(1): 167-172.
[1] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174.
[2] 汪芬芬, 王革辉, 黄添宜, 张向辉, 王永荣. 正侧面形态特征驱动的女性腿型分类[J]. 纺织学报, 2022, 43(09): 188-194.
[3] 钱静, 赵蒙蒙, 党天华. 多孔式通风服衣下空气层的定量研究[J]. 纺织学报, 2022, 43(04): 133-139.
[4] 王诗潭, 汪秀花, 王云仪. 连体服衣下间隙特征指标的确定及其在服装合体性评价中的应用[J]. 纺织学报, 2021, 42(09): 137-143.
[5] 赵倩, 邓咏梅. 基于层次分析法的三维人体扫描仪的选择[J]. 纺织学报, 2021, 42(04): 155-161.
[6] 刘芸, 修毅. 基于B/S架构的数字人台变形NURBS曲面模型[J]. 纺织学报, 2020, 41(10): 137-143.
[7] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[8] 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118.
[9] 余佳佳, 李健. 基于不同人体测量方法的数据一致性和可替换性研究[J]. 纺织学报, 2019, 40(09): 167-172.
[10] 史玉媛 申鸿 魏振乾. 腰省量分配对无袖修身旗袍造型的影响[J]. 纺织学报, 2018, 39(08): 105-109.
[11] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[12] 杨刚;;钟跃崎;. 基于同层穿透补偿的扫描服装模型的重用性[J]. 纺织学报, 2010, 31(10): 134-138.
[13] 徐继红;张文斌. 人体与服装特征曲面间距离松量的影响因子[J]. 纺织学报, 2009, 30(05): 104-108.
[14] 徐继红;张文斌;肖平. 人体与服装特征曲面间面积松量的分配关系[J]. 纺织学报, 2008, 29(5): 102-106.
[15] 金江昌. 羽绒服面料的透湿性与其结构之间关系的探讨[J]. 纺织学报, 1999, 20(02): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .