纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 1-9.doi: 10.13475/j.fzxb.20220101601

• 纤维材料 •    下一篇

侧基含磷阻燃共聚酯的制备及其固相增黏反应

尚小愉, 朱坚, 王滢, 张先明(), 陈文兴   

  1. 浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
  • 收稿日期:2022-01-10 修回日期:2022-05-27 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 张先明(1977—),男,教授,博士。主要研究方向为化学纤维材料。E-mail:zhangxm@zstu.edu.cn
  • 作者简介:尚小愉(1995—),女,硕士生。主要研究方向为聚酯纤维材料。
  • 基金资助:
    浙江省重点研发计划资助项目(2020C01143);浙江省重点研发计划资助项目(2021C01020)

Synthesis and solid-state polymerization of flame retardant copolyester containing phosphorus side groups

SHANG Xiaoyu, ZHU Jian, WANG Ying, ZHANG Xianming(), CHEN Wenxing   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-01-10 Revised:2022-05-27 Published:2023-07-15 Online:2023-08-10

摘要:

为制得高特性黏度的侧基含磷阻燃共聚酯,研究不同反应条件对固相增黏效果的影响及其反应动力学。将侧基含磷阻燃剂共聚到聚酯分子链中制得侧基含磷阻燃共聚酯,并对其进行固相增黏,分析了阻燃剂质量分数、增黏反应温度、时间3个因素对增黏效果的影响。结果表明:成功将阻燃剂共聚到聚酯分子链中制得侧基含磷阻燃共聚酯,当阻燃剂质量分数为5%时,共聚酯的极限氧指数为31.8%,热分解后的残炭量达到13.6%,结晶度为15%;与纯聚酯相比,阻燃共聚酯增黏反应过程的特性黏度变化趋势差异不明显,故阻燃共聚酯的固相增黏反应可以参照纯聚酯的增黏工艺,其特性黏度均随着增黏反应温度的升高、反应时间的延长而增加;对阻燃共聚酯的固相增黏反应动力学分析发现,其反应温度的上升、阻燃剂质量分数的减少与反应速率常数的增加呈正相关,其阻燃剂质量分数的增加与反应活化能的降低呈负相关。

关键词: 侧基含磷阻燃剂, 共聚, 含磷阻燃聚酯, 固相增黏反应, 反应动力学

Abstract:

Objective Poly(ethylene terephthalate) (PET), as the major polyester material, has excellent performance but is flammable, and hence it is important to improve the flame retardant properties of PET to satisfy the requirement for various applications. Introducing phosphorus-based flame retardants into PET molecular chains by copolymerization is one of the effective flame retardant modification methods at present. The flame retardant copolyester produced by melt polymerization has a intrinsic low viscosity of 0.6-0.7 dL/g, which cannot meet the flame retardant specifications of copolyester in fields such as engineering plastics, bottles, and industrial filament. This research represents an effort to increase the intrinsic viscosity of copolyester by polycondensation so as to expand the applications.

Method The side group phosphorus-containing flame retardant 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl] 10-phosphorus-phenanthrene-10-oxide (DDP) was copolymerized into PET molecular chain to obtain copolyester (PETD). Nuclear magnetic resonance hydrogen spectroscopy(1H NMR) and Fourier transform infrared spectrometer characterization methods were adopted to measure the success of copolyester synthesis. The intrinsic viscosity of copolyesters was determined by using viscosity test. The thermal stability, crystallinity, carbon formation capacity, flame retardant properties, actual phosphorus content and carboxyl end-group content of copolyesters were characterized by differential scanning calorimetry, thermogravimetric analysis, limiting oxygen index (LOI) test, inductively coupled plasma-optical emission spectrometer test and carboxyl end-group concentrations test. In order to investigate the intrinsic viscosity changes of flame retardant copolyester containing phosphorus side group after solid-state polycondensation reaction under different reaction conditions, different amount of side group phosphate-containing flame retardant were used for optimisation. Reaction rate constants and activation energy were calculated by analyzing the viscosity increasing effect and reaction kinetics.

Results The flame retardant copolyester containing phosphorus side group was synthesized by copolymerization method. The reaction process of solid-state polycondensation (SSP) of flame retardant copolyester containing phosphorus side groups and the reaction kinetics were studied to establish understanding of mechanism governing the polycondensation technology of flame retardant copolyester. The results showed that the intrinsic viscosity of the prepared PET and copolyester reached 0.6-0.7 dL/g (Tab. 1), meeting the requirements of conventional polyesters. The increase of the DDP content of the flame retardant caused the carboxyl end-group concentrations to increase, the crystallization capacity to be worsened, and the carbon forming capacity and flame retardant property to increase. PETD5 deminstrated good thermal stability and mechanical properties, and showed 13.6% of carbonization capacity (Tab. 2 and Fig. 6), 15% of crystallinity, and 31.8% of LOI (Tab. 1), proving successful preparation of flame retardant copolyester containing phosphorus side group in preparation for subsequent polycondensation reactions. The research showed that all polyesters achieved the intrinsic viscosity of 1.0 dL/g or higher within 10 h of solid-state polycondensation reaction at 200 and 210 ℃ (Fig. 8), and that the intrinsic viscosity of all polyesters increased with the increase of temperature and reaction time. Correspondingly, the concentration of carboxyl end-group concentrations decreased gradually with the increase of reaction temperature and reaction time. Compared with conventional PET, the reaction rate constant of flame retardant copolyester PETD increased with increasing temperature and decreasing flame retardant amount, and the activation energy increased when increasing flame retardant amount.

Conclusion It is found that the solid-state polycondensation reaction conditions are mild even with prolonged reaction time, and the copolyester demonstrates satisfactory thermal stability. It is easy to adjust the reaction conditions according to different demands in production, and therefore the study of solid-state polycondensation and condensation and adhesion reaction of flame retardant copolyester containing phosphorus side groups is of certain value for its industrial development. There are still many concerns calling for further study on the adhesion reaction of flame retardant copolyesters, and many aspects can be further explored, such as the influence of different reaction factors (vacuum degree, reaction atmosphere, particle size, crystallinity) on the adhesion of flame retardant copolyester. The changes of flame retardant properties, thermal stability, crystallization capacity and mechanical properties of flame retardant copolyester after polycondensation need to be studied in depth. The flame retardant and mechanical properties of the tackified flame retardant copolyesters needs to be evaluated.

Key words: phosphorus-based flame retardant, copolymerization, flame retardant copolyester, solid-state polycondensation, reaction kinetics

中图分类号: 

  • TQ342.92

图1

DDP的合成路线"

图2

共聚酯PETD的合成路线"

图3

PET和PETD的红外光谱图"

图4

PET和PETD5的1H NMR谱图"

表1

PET和PETD的性能参数"

样品
名称
阻燃剂质量
分数/%
磷元素含量/% 特性黏度/
(dL·g-1)
玻璃化转变
温度/℃
熔点/
LOI值/% 端羧基含量/
(mol·t-1)
结晶度/%
理论 实际
PET 0 0.684 73.6 240.4 23.0 18.2 21
PETD3 3 0.268 0.172 0.660 74.4 236.8 28.6 20.9 18
PETD5 5 0.447 0.274 0.642 75.0 233.8 31.8 21.9 15
PETD7 7 0.626 0.440 0.687 74.2 226.1 31.6 21.4

图5

PET和PETD的DSC曲线"

图6

PET和PETD的TG曲线"

表2

PET和PETD的TG测试参数"

样品编号 初始分解温度/℃ 最高分解速率温度/℃ 残炭量/%
PET 396.2 449.5 11.1
PETD3 396.0 451.5 13.4
PETD5 393.6 450.0 13.6
PETD7 394.1 455.9 15.2

图7

210 ℃下PET和PETD特性黏度与固相增黏反应时间的关系"

图8

不同温度下PET和PETD特性黏度与固相增黏反应时间的关系"

图9

不同反应条件下PET和PETD中的端羧基含量"

图10

不同温度下PET和PETD的(C0-C)/t 与C的拟合曲线"

表3

PET和PETD的反应速率常数和活化能"

样品
名称
反应速率常数k/(106 g·mol-1·h-1) 反应活化能Ea/
(kJ·mol-1)
190 ℃ 200 ℃ 210 ℃
PET 2.03×10-3 2.36×10-3 2.61×10-3 25.98
PETD3 1.78×10-3 2.03×10-3 2.32×10-3 27.02
PETD5 1.72×10-3 1.95×10-3 2.24×10-3 28.06
PETD7 1.58×10-3 1.86×10-3 2.10×10-3 30.13
[1] PENG Y, NIU M, QIN R H, et al. Study on flame retardancy and smoke suppression of PET by the synergy between Fe2O3 and new phosphorus-containing silicone flame retardant[J]. High Performance Polymers, 2020, 32(8): 871-882.
doi: 10.1177/0954008320914365
[2] YANG Y, NIU M, DAI J M, et al. Flame-retarded polyethylene terephthalate with carbon microspheres/magnesium hydroxide compound flame retardant[J]. Fire and Materials, 2018, 42(7): 794-804.
doi: 10.1002/fam.v42.7
[3] SONG Y, XUE B, WANG J, et al. Ammonium polyphosphate wrapped carbon microspheres: a novel flame retardant with smoke suppression for poly (ethylene terephthalate)[J]. Journal of Polymer Research, 2020, 27(1): 1-12.
doi: 10.1007/s10965-019-1979-y
[4] XIA J, SU Y M, LI W M. Post-polymerization functionalization to a novel phosphorus- and nitrogen-containing polyether coating for flame retardant treatment of PET fabric[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47299.
doi: 10.1002/app.47299
[5] ZHAO H B, WANG Y Z. Design and synthesis of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017. DOI:10.1002/marc.201700451.
doi: 10.1002/marc.201700451
[6] WEI P, YAN J F, LI L L, et al. Thermal degradation and pyrolysis behavior of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters[J]. Journal of Analytical and Applied Pyrolysis, 2022. DOI: 10.1016/j.jaap.2022.105524.
doi: 10.1016/j.jaap.2022.105524
[7] 俞雨农, 蒲新明, 郑兵, 等. 磷系阻燃聚酯的制备及其性能[J]. 浙江理工大学学报(自然科学版), 2021, 45(2): 205-211.
YU Yunong, PU Xinming, ZHENG Bing, et al. Preparation and properties of phosphorus flame retardant polyester[J]. Journal of Zhejiang Sci-Tech Univer-sity(Natural Sciences Edition), 2021, 45(2): 205-211.
[8] WEI P, LOU H J, WANG W, et al. Synthesis and properties of wholly aromatic phosphorus-containing thermotropic liquid crystal copolyesters with excellent fibre formation ability[J]. Liquid Crystals, 2021, 48(4): 466-474.
doi: 10.1080/02678292.2020.1789768
[9] 黄意龙, 龚静华, 杨曙光, 等. 磷系阻燃共聚酯的结构与性能[J]. 功能高分子学报, 2012, 25(4): 410-416.
HUANG Yilong, GONG Jinghua, YANG Shuguang, et al. Structure and properties of phosphorus flame retardant copolyester[J]. Journal of Functional Polymers, 2012, 25(4): 410-416.
[10] ZHANG Y, NI Y P, HE M X, et al. Phosphorus-containing copolyesters: the effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances[J]. Polymer, 2015, 60: 50-61.
doi: 10.1016/j.polymer.2015.01.030
[11] CHEN H B, CHEN L, DONG X, et al. Block phosphorus-containing poly (trimethylene terephthalate) copolyester via solid-state polymerization: reaction kinetics and sequential distribution[J]. Polymer, 2012, 53(16): 3520-3528.
doi: 10.1016/j.polymer.2012.05.050
[12] LI L J, DUAN R T, ZHANG J B, et al. Phosphorus-containing poly (ethylene terephthalate): solid-state polymerization and its sequential distribution[J]. Industrial and Engineering Chemistry Research, 2013, 52(15):5326-5333.
doi: 10.1021/ie400224z
[13] 万苏影, 包建娜, 王滢, 等. 含磷阻燃共聚酯的熔融增黏反应及其动力学[J]. 纺织学报, 2021, 42(11): 9-15.
WAN Suying, BAO Jianna, WANG Ying, et al. Melt polycondensation and kinetics of phosphorus containing flame retardant copolyesters[J]. Journal of Textile Research, 2021, 42(11): 9-15.
[14] 万苏影. 磷系阻燃共聚酯的合成及增黏反应研究[D]. 杭州: 浙江理工大学, 2021: 1-53.
WAN Suying. Synthesis of phosphorus containing flame retardant copolyesters and study on its polymeriza-tion[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 1-53.
[15] DUH B. Reaction kinetics for solid-state polymerization of poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2001, 81(7): 1748-1761.
doi: 10.1002/(ISSN)1097-4628
[16] JI H, GAN Y, KUMI A K, et al. Kinetic study on the synergistic effect between molecular weight and phosphorus content of flame retardant copolyesters in solid-state polymerization[J]. Journal of Applied Polymer Science, 2020. DOI:10.1002/app.49120.
doi: 10.1002/app.49120
[1] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[2] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[3] 杨振声, 王炳帅. 烯丙基聚烷氧基环氧醚的制备及其性能[J]. 纺织学报, 2022, 43(03): 103-109.
[4] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[5] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[6] 万苏影, 包建娜, 王滢, 张先明, 陈世昌, 杨志超, 石教学, 陈文兴. 含磷阻燃共聚酯的熔融增黏反应及其动力学[J]. 纺织学报, 2021, 42(11): 9-16.
[7] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[8] 关震宇, 周文乐, 张玉梅, 王华平. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(03): 64-70.
[9] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[10] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[11] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[12] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[13] 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178.
[14] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[15] 陈咏, 王颖, 何峰, 王静, 朱志国, 董振峰, 王锐. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!