纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 183-191.doi: 10.13475/j.fzxb.20220404509

• 综合述评 • 上一篇    下一篇

纤维基自供能电子皮肤的构建及其应用性能研究进展

吕晓双1, 刘丽萍2, 俞建勇3, 丁彬3, 李召岭1,3()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.青岛市产品质量检验研究院, 山东 青岛 266061
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2022-04-13 修回日期:2022-07-05 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 李召岭
  • 作者简介:吕晓双(1997—),女,博士生。主要研究方向为纤维基压力传感器及智能电子皮肤。
  • 基金资助:
    国家自然科学基金面上项目(52073051);国家自然科学基金面上项目(51873030)

Fabrication and application research progress of fiber-based self-powered electronic skins

LÜ Xiaoshuang1, LIU Liping2, YU Jianyong3, DING Bin3, LI Zhaoling1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Qingdao Product Quality Testing Research Institute, Qingdao, Shandong 266061, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-04-13 Revised:2022-07-05 Published:2022-10-15 Online:2022-10-28
  • Contact: LI Zhaoling

摘要:

本文结合触觉传感型电子皮肤的组成结构,首先介绍了常用构筑材料的种类、性能特点及制备工艺,然后针对致密的薄膜基和橡胶基电子皮肤透气性差,长期穿戴易导致皮肤刺痒等问题,概述了可呼吸纤维材料作为电子皮肤基底层、电极层和传感层所具有的独特优势。其次,介绍了压电式和摩擦电式电子皮肤的触觉传感原理,不仅可以实现实时的压力响应,还可收集环境中的机械能转化为电能来实现自供能,有利于制备微型、轻量、柔性的可穿戴器件。最后,从制备方法、性能表征和功能应用等方面系统总结了近年来纤维基自供能电子皮肤在运动监测、医疗检测等多个领域的应用进展,并深入探讨了目前存在的问题与未来的发展方向。

关键词: 电子皮肤, 纤维材料, 自供能, 压电, 摩擦电, 智能纤维

Abstract:

This review introduces the categories, characteristics, and preparation processes for constructing materials with applications for electronic skins, from the perspective of composition structure of the electronic skins with tactile sensing capability. The compelling features of breathable fiber materials serving as substrate layer, electrode layer, and sensing layer in electronic skins were highlighted, in view of the poor air permeability of current dense film-based and rubber-based electronic skins that easily lead to itching during long-term wearing. The working mechanisms of piezoelectric and triboelectric electronic skins were introduced, which are not only able to achieve real-time pressure sensing response, but also able to harvest the ambient mechanical energy and convert it into electricity to power themselves. These are conducive to the fabrication of miniatured, lightweight, and flexible wearable devices. The research progresses in fiber-based self-powered electronic skins in the fields of motion monitoring and medical detection were comprehensively summarized in terms of preparation methods, performance characterizations, and practical applications. The existing challenges and future development directions of fiber-based self-powered electronic skins were extensively discussed.

Key words: electronic skin, fiber material, self-powered, piezoelectricity, triboelectricity, smart fiber

中图分类号: 

  • TP212

表1

导电电极层的分类与比较"

导电电极层 代表材料 优点 缺点
金属 Au、Ag、Cu、Al及其纳米线、纳米棒等 高导电率、机械稳定性好、易于加工 柔性差、易于氧化和生锈
碳材料 CB、石墨烯、rGO、CNTs 高导电率、纳米多孔结构、机械稳定性好 溶液分散性差、结构不易控制
导电聚合物 PEDOT、PEDOT:PSS、PANI、PPy 良好的柔性、易于溶液加工处理 成本高、导电率低、稳定性差

表2

活性传感层的分类与比较"

传感层 分类 代表材料 优点 缺点
压电材料 压电陶瓷 BTO、ZnO、PZT 压电常数高、
强度高、化学惰性
柔性差、硬而脆 选材单一、能量
转化效率低
压电聚合物 PVDF、P(VDF-TrFE) 柔性好、易于加工 压电常数小
摩擦电材料 摩擦电正性材料 乙基纤维素、聚酰胺 选材范围广、能量转化效率高 灵敏度低
摩擦电负性材料 PTFE、PVDF
PDMS

图1

常用材料的摩擦电序列"

图2

压电传感原理"

图3

纤维基压电式电子皮肤"

图4

摩擦电式传感原理"

图5

纤维基摩擦电式电子皮肤"

图6

纤维基压电-摩擦电混合式电子皮肤"

[1] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8 (5): 4689-4697.
doi: 10.1021/nn500441k pmid: 24592988
[2] WANG C, HWANG D, YU Z, et al. User-interactive electronic skin for instantaneous pressure visualiza-tion[J]. Nature Materials, 2013, 12 (10): 899-904.
doi: 10.1038/nmat3711
[3] LOU M N, ABDALLA I, ZHU M M, et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12 (17): 19965-19973.
[4] CHANG T H, LI K, YANG H, et al. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802418.
doi: 10.1002/adma.201802418
[5] YU J, HOU X, HE J, et al. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104437.
doi: 10.1016/j.nanoen.2019.104437
[6] ZHANG B, TANG Y, DAI R, et al. Breath-based human-machine interaction system using triboelectric nanogenerator[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103953.
doi: 10.1016/j.nanoen.2019.103953
[7] LI M, JIE Y, SHAO L H, et al. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator[J]. Nano Research, 2019, 12 (8): 1831-1835.
doi: 10.1007/s12274-019-2443-3
[8] AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (15): 14007-14021.
doi: 10.1007/s10854-019-01751-w
[9] ZHOU Y, HE J, WANG H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-13281-8.
doi: 10.1038/s41598-017-13281-8
[10] MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105071.
doi: 10.1016/j.nanoen.2020.105071
[11] XU Z, WU C, LI F, et al. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers[J]. Nano Energy, 2018, 49: 274-282.
doi: 10.1016/j.nanoen.2018.04.059
[12] LI Z, ZHU M, SHEN J, et al. All fiber structured electronic skin with high elasticity and breathability[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201908411.
doi: 10.1002/adfm.201908411
[13] YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018.DOI: 10.1002/admt.201700241.
doi: 10.1002/admt.201700241
[14] PENG X, DONG K, YE C Y, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624.
doi: 10.1126/sciadv.aba9624
[15] CHENG Y, WU D, HAO S, et al. Highly stretchable triboelectric tactile sensor for electronic skin[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103907.
doi: 10.1016/j.nanoen.2019.103907
[16] QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on PDMS substrates[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202003155.
doi: 10.1002/adma.202003155
[17] GE J, SUN L, ZHANG F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2016, 28 (4): 722-728.
doi: 10.1002/adma.201504239
[18] MACDONALD W A. Engineered films for display technologies[J]. Journal of Materials Chemistry, 2004, 14 (1): 4-10.
doi: 10.1039/b310846p
[19] GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52 (3): 523-533.
doi: 10.1021/acs.accounts.8b00500 pmid: 30767497
[20] NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.
doi: 10.1109/JPROC.2012.2190168
[21] RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28 (22): 4415-4440.
doi: 10.1002/adma.201505118
[22] NI H J, LIU J G, WANG Z H, et al. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 16-27.
doi: 10.1016/j.jiec.2015.03.013
[23] SOMEYA T, BAO Z, MALLIARAS G G. The rise of plastic bioelectronics[J]. Nature, 2016, 540 (7633): 379-385.
doi: 10.1038/nature21004
[24] LIU Q, JIN L, ZHANG P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (8): 10623-10631.
[25] YU J, HOU X, CUI M, et al. Skin-conformal BaTiO3/ecoflex-based piezoelectric nanogenerator for self-powered human motion monitoring[J]. Materials Letters, 2020. DOI: 10.1016/j.matlet.2020.127686.
doi: 10.1016/j.matlet.2020.127686
[26] QI D, LIU Z, LEOW W R, et al. Elastic substrates for stretchable devices[J]. MRS Bulletin, 2017, 42 (2): 103-107.
doi: 10.1557/mrs.2017.7
[27] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11 (43): 40716-40725.
[28] ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability[J]. Nanoscale, 2016, 8 (24): 12105-12112.
doi: 10.1039/c6nr02678h pmid: 27250529
[29] GONG S, LAI D T H, SU B, et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials, 2015. DOI: 10.1002/aelm.201400063.
doi: 10.1002/aelm.201400063
[30] DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902549.
doi: 10.1002/adma.201902549
[31] WANG Z, CUI H, LI S, et al. Facile approach to conductive polymer microelectrodes for flexible electronics[J]. ACS Applied Materials & Interfaces, 2021, 13 (18): 21661-21668.
[32] QI K, HE J, WANG H, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42951-42960.
[33] HONDA W, HARADA S, ARIE T, et al. Wearable, uman-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques[J]. Advanced Functional Materials, 2014, 24 (22): 3299-3304.
doi: 10.1002/adfm.201303874
[34] CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016, 28 (22): 4203-4218.
doi: 10.1002/adma.201504150
[35] AHMED A, GUAN Y S, HASSAN I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105044.
doi: 10.1016/j.nanoen.2020.105044
[36] LI X, LIN Z H, CHENG G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano, 2014, 8(10): 10674-10681.
doi: 10.1021/nn504243j pmid: 25268317
[37] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26 (16): 2514-2520.
doi: 10.1002/adma.201305659
[38] AHN S, CHO Y, PARK S, et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.104932.
doi: 10.1016/j.nanoen.2020.104932
[39] SANG M, WANG S, LIU S, et al. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection[J]. ACS Applied Materials & Interfaces, 2019, 11 (50): 47340-47349.
[40] SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201870294.
doi: 10.1002/adma.201870294
[41] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019.DOI: 10.1038/s41467-019-09461-x.
doi: 10.1038/s41467-019-09461-x
[42] ZHU M M, LOU M N, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2019.104429.
doi: 10.1016/j.nanoen.2019.104429
[43] WANG Y, ZHU M, WEI X, et al. A dual-mode electronic skin textile for pressure and temperature sensing[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.130599.
doi: 10.1016/j.cej.2021.130599
[44] BU T, XIAO T, YANG Z, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800066.
doi: 10.1002/adma.201800066
[45] DONG K, WU Z, DENG J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804944.
doi: 10.1002/adma.201804944
[46] ZHU M, WANG Y, LOU M, et al. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing[J]. Nano Energy, 2021.DOI: 10.1016/j.nanoen.2020.105669.
doi: 10.1016/j.nanoen.2020.105669
[47] PENG X, DONG K, NING C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202103559.
doi: 10.1002/adfm.202103559
[48] ZHU M, LOU M, YU J, et al. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105208.
doi: 10.1016/j.nanoen.2020.105208
[1] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[2] 王罗俊, 彭来湖, 史伟民, 张伟中. 基于压电黏合体的电磁选针检测技术[J]. 纺织学报, 2022, 43(08): 167-175.
[3] 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182.
[4] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
[5] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[6] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[7] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[8] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[9] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[10] 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020, 41(01): 26-31.
[11] 李辉 王娇娜 赵树宇 李从举. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(09): 34-38.
[12] 蒋洁 陈胜 李静静 付润芳 林义 顾迎春. 静电纺钛酸钡/聚偏氟乙烯纳米复合柔性压电纤维膜[J]. 纺织学报, 2018, 39(02): 14-19.
[13] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
[14] 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10.
[15] 赖森财 任雯 刘永桂. 嵌入式电子贾卡控制系统设计[J]. 纺织学报, 2016, 37(10): 135-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!