纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 56-64.doi: 10.13475/j.fzxb.20220801601

• 纤维材料 • 上一篇    下一篇

静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能

陈江萍1,2,3, 郭朝阳1,2,3, 张琪骏1,2, 吴仁香1,2, 钟鹭斌1,2,3,4, 郑煜铭1,2,3,4()   

  1. 1.中国科学院城市环境研究所 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
    2.中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室, 福建 厦门 361021
    3.中国科学院大学, 北京 100049
    4.福建省大气臭氧污染防控重点实验室, 福建 厦门 361021
  • 收稿日期:2022-08-03 修回日期:2023-09-07 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 郑煜铭(1978—),男,研究员,博士。主要研究方向为污染防治材料与技术。E-mail:ymzheng@iue.ac.cn
  • 作者简介:陈江萍(1990—),女,博士生。主要研究方向为大气细颗粒物污染控制。
  • 基金资助:
    国家自然科学基金项目(52000167);厦门市重大科技项目(3502Z20191021);福建省中科院STS计划项目(N2021T3071);宁波市科技创新2025重点专项项目(2022Z028)

Preparation and air filtration performance of electrospun polyamide 6/polystyrene composite membranes

CHEN Jiangping1,2,3, GUO Chaoyang1,2,3, ZHANG Qijun1,2, WU Renxiang1,2, ZHONG Lubin1,2,3,4, ZHENG Yuming1,2,3,4()   

  1. 1. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences,Xiamen, Fujian 361021, China
    2. Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Xiamen, Fujian 361021, China
  • Received:2022-08-03 Revised:2023-09-07 Published:2024-01-15 Online:2024-03-14

摘要:

针对空气过滤纤维材料的过滤效率、阻力和使用寿命难以平衡的问题,采用多喷头静电纺丝技术,制备了不同直径、形貌纤维及不同纤维沉积顺序的聚酰胺6/聚苯乙烯(PA6/PS)复合纳米纤维膜,测试了复合膜的平均孔径及孔隙率,建立了纤维结构与过滤效率及阻力的构效关系;结合扫描电镜表征探讨了不同形貌、直径纤维的叠加次序对过滤寿命及细颗粒物沉积行为的影响,系统研究了过滤风速、细颗粒物尺寸对过滤性能的影响。结果表明:在5.33 cm/s的风速下,以多喷头静电纺丝方式制备的PA6/PS复合膜具有更好的抵抗风速变化的能力,在长期使用中阻力增加较缓慢,其具有93.13%的过滤效率,30.67 Pa的过滤阻力和0.088 9 Pa-1的品质因子,综合过滤性能优于同等条件下H10等级(过滤效率>90%)的商业玻璃纤维过滤膜。

关键词: 聚酰胺6, 聚苯乙烯, 多喷头静电纺丝, 空气过滤, 多层复合滤料, 微纳米纤维, 串珠结构

Abstract:

Objective Particulate matter in the air poses a significant health risk to humans. Utilizing fibrous materials to filter fine particles is the most prevalent method for golving the problem. Most filtration media struggle to achieve a balance among filtering efficiency, pressure drop, and service life. In order to create effective air filters, the fiber structures must be precisely designed. High-specific-surface-area nanofibers offer better filtering efficiency but greater air resistance. Beaded fibers provide abundant open spaces between fibers and lower air pressure as well as increasing service life. However, few studies have considered the influence of varied fiber sizes and morphologies, and fiber deposition order on filtering performance.

Method By controlling the mass concentrations and types of polymers with mass concentrations of 20% polyamide 6 (PA6), 20% polystyrene (PS20), and 30% PS (PS30), respectively, the single nozzle electrospinning technique was adopted to produce PA6 nanofibers (referred to as PA6 mono-membrane), PS beaded nanofibers (referred to as PS20 single fiber membrane), and PS microfibers (referred to as PS30 single fiber membrane), as well as composite fiber membranes with varying single fiber membrane deposition sequences. A sequentially deposited PA6/PS20/PS30 membrane, a reverse-deposited PS30/PS20/PA6 membrane, and a three-nozzle electrospun PA6-PS20-PS30 membrane were presented. The produced fibrous membranes were tested for initial filtration, filtration performance under variable face velocity, and dust holding.

Results PA6 nanofibers had greater filtering efficiency (99.18%) and larger pressure drop (85 Pa). PS20 beaded nanofibers could balance the contradiction between filtration efficiency and air resistance, with the highest quality factor (with filtration efficiency of 78.47%, air resistance of 20 Pa, quality factor of 0.079 4 Pa-1) among the three mono-membranes. The pressure drop of PS30 microfibers was the lowest among the three, which was 10 Pa. None of the three mono-membranes can solve the problem of reduced filtration efficiency at extremely high wind speed. The filtration efficiency and air resistance of the three composite membranes were approximately the same, however the filtration performance was different when dust was loaded. In the 30 min dust loading test, the air resistance of PA6/PS20/PS30 membrane increased faster, whereas that of PS30/PS20/PA6 membrane grew slowest. It is speculated that this is related to the size of the fiber structure on the windward side and the pore structure between the fibers. From SEM images before and after dust collection, it is seen that a large number of coarse fibers and holes existed on the wind side of PS30/PS20/PA6 and PA6-PS20-PS30 membranes, which are conducive to the entry of fine particles into the membranes and delay the formation of "cake-layer filtration". In addition, as the upwind side of the PA6-PS20-PS30 membrane comprised nanofibers, microfibers, and beaded fibers simultaneously, filtration efficiency and air resistance can be maintained at severe wind speeds. The most penetrating particle size (MPPS) of PA6 mono-membrane under the challenge of 30-500 nm monodisperse particles was around 90 nm, with a filtration efficiency <70%. The MPPS of PS20 single fiber membrane was 30 nm, and the minimum filtering efficiency was 80.21%. The size fraction filtering efficiency of PA6/PS20/PS30 composite fiber membrane was more than 94%, and the MPPS was around 90 nm. Its filtering performance was superior to that of PA6 and PS20 single fiber membrane. Thus, owing to the diversity of fiber diameter and shape, the composite fiber membrane may demonstrate higher filtering performance under diverse particle sizes.

Conclusion By depositing PA6, PS20, and PS30 single fiber membranes in various sequences, composite fiber membranes with a beaded structure and nano-to microscale fibers were produced. Due to the complementary of fibers with various diameters and morphologies, the composite fiber membranes' initial filtration efficiency, dust-loading capacity, and filtration efficiency in the presence of high wind speeds are significantly increased. The wind side of the composite fiber membrane with an open pore structure permitted fine particles to enter the filter, hence delaying the increase in air resistance over time and prolonging the service life of the air filters. The PA6-PS20-PS30 membrane has a filtration efficiency of 93.13% and a pressure drop of 30.67 Pa, which is superior to the H10 commercial glass fiber filter. Thus, multi-nozzle electrospinning composite fiber membranes have greater potential for real-field filtration.

Key words: polyamide 6, polystyrene, multiple-nozzle electrospinning, air filtration, multi-layer composite filter, micro-nano fiber, beaded structure

中图分类号: 

  • X513

表1

PA6、PS单纤维膜静电纺丝参数"

单纤
维膜
质量分数/% 溶剂 电压/
kV
纺丝
距离/
cm
进料流量/
(mL·h-1)
纺丝
时间/
min
PA6 PS
PA6 20 甲酸 20 15 0.1 90
PS20 20 DMF 15 15 1.0 90
PS30 30 DMF 15 15 1.0 90

图1

PA6/PS复合纳米纤维膜制备示意图"

图2

单纤维膜的扫描电镜照片及纤维直径分布图"

图3

单纤维膜的过滤性能"

图4

单纤维膜在不同测试风速下的过滤性能"

图5

PA6、PS20、PS30单纤维膜和PA6/PS20/PS30复合膜的平均孔径及孔隙率"

图6

复合膜的扫描电镜照片"

图7

PA6/PS复合膜和商业玻璃纤维过滤材料过滤性能对比"

图8

复合膜在不同测试风速下的过滤性能"

图9

复合膜过滤阻力随时间的变化"

图10

复合膜在容尘测试后面风侧的扫描电镜照片"

图11

PA6、PS20和PA6/PS20/PS30纤维膜的力学性能"

图12

PA6、PS20、PA6/PS20/PS30纤维膜和H10玻璃纤维过滤材料对不同粒径颗粒物的过滤效率"

[1] World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide[EB/OL]. [2021-09-22]. https://www.who.int/publications/i/item/9789240034228.
[2] PUI David, CHEN Shengchieh, ZUO Zhili, et al. PM2.5 in china: measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014(2): 1-26.
[3] NEL AndrÉ. Air pollution-related illness: effects of particles[J]. Science, 2005, 308(5723): 804-806.
doi: 10.1126/science.1108752
[4] 刘朝军, 刘俊杰, 丁伊可, 等. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(5): 31-37.
LIU Chaojun, LIU Junjie, DING Yike, et al. Preparation and properties of expanded polytetrafluoroethylene membrane composites with high dust holding capacity for high efficiency air filtration[J]. Journal of Textile Research, 2021, 42(5): 31-37.
[5] LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: a review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313.
[6] LI Yuyao, YIN Xia, YU Jianyong, et al. Electrospun nanofibers for high-performance air filtration[J]. Composites Communications, 2019, 15: 6-19.
doi: 10.1016/j.coco.2019.06.003
[7] 王慧, 刘新懿, 王伟, 等. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356.
doi: 10.16085/j.issn.1000-6613.2021-2016
WANG Hui, LIU Xinyi, WANG Wei, et al. Research and application of electrospun nanofibers with special morphology: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356.
doi: 10.16085/j.issn.1000-6613.2021-2016
[8] 魏楚, 钱晓明, 钱幺, 等. 空气过滤用微纳米纤维多层梯度复合材料的制备与性能[J]. 材料科学与工程学报, 2021, 39(4):634-639,658.
WEI Chu, QIAN Xiaoming, QIAN Yao, et al. Preparation and properties of micro-nanofiber multilayer gradient composite air filters[J]. Journal of Materials Science & Engineering, 2021, 39(4):634-639,658.
[9] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215
[10] HAN S, KIM J, KO S H. Advances in air filtration technologies: structure-based and interaction-based approaches[J]. Materials Today Advances, 2021. DOI:10.1016/j.mtadv.2021.100134.
[11] 万雨彩, 刘迎, 王旭, 等. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(4): 15-20.
WAN Yucai, LIU Ying, WANG Xu, et al. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance[J]. Journal of Textile Research, 2020, 41(4): 15-20.
[12] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1): 49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57.
[13] 胡雪敏, 杨文秀, 李腾. 氧化石墨烯/聚偏二氟乙烯复合纤维过滤膜的制备及其过滤性能[J]. 纺织学报, 2019, 40(4): 32-37.
HU Xuemin, YANG Wenxiu, LI Teng. Preparation of graphene oxide/polyvinglidene fluoride composite filtration membrane and its filtration performance[J]. Journal of Textile Research, 2019, 40(4): 32-37.
[14] 袁凯, 仲兆祥, 邢卫红. 碳纳米管膜在空气净化领域的研究进展[J]. 膜科学与技术, 2021, 41(4):138-146.
YUAN Kai, ZHONG Zhaoxiang, XING Weihong. Progress of carbon nanotube-based membrane for air purification[J]. Membrane Science and Technology, 2021, 41(4): 138-146.
[15] YANG Yinjing, ZHANG Shichao, ZHAO Xinglei. Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration[J]. Separation and Purification Technology, 2015, 152:14-22.
doi: 10.1016/j.seppur.2015.08.005
[16] CHEN JiangPing, CHEN Shengchieh, WU Xiaoqiong, et al. Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: preparation, performance evaluation and mechanism insights[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119392.
[17] 李晓晓, 蒋靖坤, 王东滨, 等. 大气超细颗粒物来源及其化学组分研究进展[J]. 环境化学, 2021, 40(10): 2947-2959.
LI Xiaoxiao, JIANG Jingkun, WANG Dongbin, et al. Research progress on the sources and the chemical composition of ambient ultrafine particles[J]. Environmental Chemistry, 2021, 40(10): 2947-2959.
[18] WANG Jing, KIM Seongchan, PUI David, et al. Figure of merit of composite filters with micrometer and nanometer fibers[J]. Aerosol Science & Technology, 2008. 42(9): 722-728.
[19] LI Peng, WANG Chunya, ZHANG Yingying, et al. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561.
doi: 10.1002/smll.201401553 pmid: 25288476
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[3] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[4] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[5] 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51.
[6] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[7] 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8.
[8] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[9] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[10] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[11] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[12] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[13] 苏婧, 关玉, 付少海. 单分散聚苯乙烯和聚(苯乙烯-co-苯乙烯磺酸钠)乳胶粒的制备及其喷墨流畅性[J]. 纺织学报, 2023, 44(05): 13-20.
[14] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[15] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!