纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 134-141.doi: 10.13475/j.fzxb.20231006001

• 染整工程 • 上一篇    下一篇

分散染料在超临界CO2流体染色聚酯纤维中的扩散行为

范博1,2, 吴伟1,2, 王健3, 徐红1,2,4, 毛志平1,2,4,5()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学与化工学院, 上海 201620
    3.青岛即发集团股份有限公司, 山东 青岛 266000
    4.东华大学 纺织科技创新中心, 上海 201620
    5.东华大学 国家染整工程技术研究中心, 上海 201620
  • 收稿日期:2023-10-17 修回日期:2023-12-01 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 毛志平(1969—),男,研究员,博士。主要研究方向为纺织品功能性整理及绿色环保助剂。E-mail:zhpmao@dhu.edu.cn
  • 作者简介:范博(1999—),男,硕士生。主要研究方向为超临界二氧化碳流体染色。
  • 基金资助:
    国家自然科学基金项目(22208049);山东省自然科学基金重大基础研究项目(ZR2020ZD22);山东省重大科技创新工程项目(2019JZZY010406)

Diffusion behavior of disperse dyes in supercritical CO2 fluid polyester fibers dyeing

FAN Bo1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Jifa Group Co., Ltd., Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-10-17 Revised:2023-12-01 Published:2024-02-15 Online:2024-03-29

摘要:

为深入研究分散染料的扩散性能在超临界CO2染色过程中影响染色条件及染色质量的理论机制,使用共聚焦拉曼显微镜研究了超临界CO2流体染色在不同工况条件(100~140 ℃、21~27 MPa、5~90 min)下分散染料(分散红167、分散橙30、分散蓝79)在涤纶中的扩散行为。通过拉曼深度成像图获得了染料在纤维径向分布的数据,计算扩散系数。结果显示:分散染料在染色初期(5 min内)已在纤维内分布均匀,且随染色时间、染色压力的增加,染料在纤维内部均匀上染。对比染色后纤维径向的拉曼光谱数据与纱线上染量数据,验证了拉曼光谱数据的有效性。经计算分散染料中分散橙30的扩散系数最高(9.744×10-15 m2/s)。表明拉曼技术用于分析单纤维内染料扩散有着巨大的优势,反应快速,制样简单,同时可在无损纤维的前提下对涤纶内部的染料分布进行测量。

关键词: 分散染料, 聚酯纤维, 超临界CO2流体, 共聚焦拉曼显微镜, 扩散

Abstract:

Objective Supercritical CO2 fluid dyeing is attracting attentions as a green technology that is promising to root out the printing and dyeing wastewater problem. There are still deficiencies in understanding the dyeing mechanisms, among which the understanding of diffusion performance of dyestuffs would play a key role in exploring the dyeing process with supercritical CO2 fluids. This research aims to study the diffusion behaviour of disperse dyes in supercritical CO2 fluid dyed polyester fibers.

Method The diffusion behaviour of disperse dyes (Disperse Red 167, Disperse Orange 30, Disperse Blue 79) in polyester fibers under different dying conditions of supercritical CO2 fluid dyeing was investigated using confocal Raman microscopy. Based on the Raman spectra of the dyes, fibers before and after dyeing and the Raman characteristic peaks of the dyes in the dyed fibers were analyzed. The distribution of the dyes in the fibers was also studied by selecting the corresponding depth imaging map according to the characteristic peaks of the dyes. The accuracy of the data was later verified by comparing the Raman data with the exfoliated colour data. The diffusion coefficient was also evaluated.

Results Firstly, the position of the main Raman peak (1 616 cm-1) of the polyester fiber and the Raman characteristic peak of disperse dyes in the fiber was obtained by comparing the Raman spectra of the samples. The depth imaging function of confocal Raman microscope was used to analyze the fibers after dyeing under different conditions, revealing that the dye in the fibers increased significantly from 5 to 30 min of dyeing. The adsorption capacity of three dyes in the fibers increased with pressure, the adsorption capacity of Disperse Red 167 and Disperse Orange 30 in the fiber increased with the increase of temperature, and the adsorption capacity of disperse Blue 79 in the fiber showed an increase and then a decrease. The dye was found to be evenly distributed in the fibers at the early stage of dyeing (dyeing time 5 min). The Raman data were compared with the stripping data to verify the validity of the Raman data, and the diffusion coefficients of the three dyes were calculated under the dyeing condition of 120 ℃ temperature and 27 MPa pressure. The results show that Raman spectroscopy is able to facilitate quantitatively analyses of dyeing polyester fibers with disperse dyes.

Conclusion The diffusion of disperse dyes in polyester fibers after supercritical CO2 dyeing was studied by confocal Raman microscopy without damaging the polyester fibers. The content of Disperse Red 167 and Disperse Orange 30 in polyester fibers increased with increasing dyeing time and pressure, while the content of Disperse blue 79 increased and then decreased with increasing dyeing temperature. The diffusion process of the dye was analyzed by studying the IDyes/IFibers at different fibre depths under different dyeing conditions. It was found that in the early stages of dyeing (5 min into dyeing) the dye already showed a uniform distribution in the fibers, which was related to the dissolution of the polyester fibers in the supercritical CO2 fluid and the high diffusivity of the supercritical CO2 fluid itself. The Raman data was compared with conventional stripping data which demonstrated the accuracy of the Raman data and the suitability of Raman spectroscopy to quantify the disperse dye staining in polyester fibers.

Key words: disperse dye, polyester fiber, supercritical CO2, confocal Raman microscope, diffusion

中图分类号: 

  • TS193.1

图1

不同分散染料及其ScCO2染色前后聚酯纤维的拉曼光谱图"

图2

不同染色时间下分散染料ScCO2染色聚酯纤维的拉曼光谱图"

图3

不同染色时间下分散染料染色纤维的拉曼深度成像图(×200)"

图4

不同染色温度、压力下分散染料染色纤维的拉曼深度成像图(×200)"

图5

分散红167在不同染色时间、温度、压力下染色后纤维中径向的IDyes/IFibers"

表1

不同染色条件下分散染料在纱线中的上染量以及纤维径向上IDyes/IFibers的平均值"


染色条件 分散红167 分散橙30 分散蓝79
温度/
压力/
MPa
时间/
min
I D y e s / I F i b e r s ˉ 上染量/
(mg·g-1)
I D y e s / I F i b e r s ˉ 上染量/
(mg·g-1)
I D y e s / I F i b e r s ˉ 上染量/
(mg·g-1)
1 120 27 5 0.116 1.707 0.136 6.619 0.447 3.207
2 120 27 15 0.201 3.135 0.151 6.942 0.795 6.098
3 120 27 30 0.377 4.564 0.170 7.802 0.960 7.477
4 120 27 60 0.433 5.909 0.167 7.785 1.007 7.510
5 120 27 90 0.510 7.121 0.175 8.031 1.196 7.746
6 100 27 60 0.283 4.435 0.137 7.057 0.618 4.489
7 140 27 60 0.518 7.714 0.167 7.790 0.898 6.581
8 120 21 60 0.124 1.729 0.112 5.302 0.405 2.622
9 120 24 60 0.307 4.153 0.160 8.367 0.776 4.853

图6

不同染色条件下上染量与( I D y e s / I F i b e r s ˉ) 的比值"

图7

拉曼数据绘制的ct/c∞与t1/2关系图"

[1] 《“十四五”工业绿色发展规划》发布绿色低碳转型方向[J]. 印染, 2022, 48(1): 84-85.
The "14th Five-Year Plan" for Industrial Green Development released the direction of green and low-carbon transformation[J]. China Dyeing & Finishing, 2022, 48(1): 84-85.
[2] MAURO B. Recent advances in supercritical fluid dyeing[J]. Coloration Technology, 2020, 136(4): 317-335.
doi: 10.1111/cote.v136.4
[3] SICARDI S, MANNA L, BANCHERO M. Diffusion of Disperse dyes in PET films during impregnation with a supercritical fluid[J]. The Journal of Supercritical Fluids 2000, 17 (2), 187-194.
doi: 10.1016/S0896-8446(99)00055-8
[4] 李雁, 徐明仙, 董萍, 等. 超临界CO2中分散红54在涤纶织物中的扩散研究[J]. 高校化学工程学报, 2014, 28(3):549-552.
LI Yan, XU Mingxian, DONG Ping, et al. Study on diffusion of disperse Red 54 within terylene fabric in supercritical carbon dioxide[J]. Jounal of Chemical Engineering of Chinese University, 2014, 28 (3):549-552.
[5] 黄钢. 超临界流体染色产业化关键技术的研究[D]. 上海: 东华大学, 2010:55-57.
HUANG Gang. The study off key technolog-ies on the dyeing of textiles in supercritic-al fluid on industrial scale[D]. Shanghai: Donghua University, 2010:56-57.
[6] KIM T, SEO B, PARK·G, et al. Predicting diffusion behavior of disperse dyes in polyester fibers by a method based on extraction[J]. The Journal of Supercritical Fluids, 2020. DOI:10.1016/j.supflu.2019.104685.
[7] BRENAN C J H, HUNTER I W. Confocal image properties of a confocal scanning laser visible light FT-Raman microscope[J]. Applied Spectroscopy, 1995, 49(7):971-976.
doi: 10.1366/0003702953964714
[8] ClERCK K D, OOSTVELDT P V, RAHIER H, et al. Variations in diffusion coefficient of disperse dyes in single PET fibres: monitored and interpreted by confocal laser scanning microscopy[J]. Polymer, 2005, 46(1):101-108.
doi: 10.1016/j.polymer.2004.10.074
[9] 白萃萃, 梁鲁宁, 粱思禹, 等. 显微共聚焦激光拉曼光谱技术鉴别假币上的光变油墨[J]. 刑事技术, 2022, 47(5):477-482.
BAI Cuicui, LIANG Luning, LIANG Siyu, et al. Micro Confocal Raman spectroscopy identifying types of optically variable ink from counterfeit note.[J]. Forensic Science and Technology, 2022, 47(5):477-482.
[10] PARK J, JUNG M, LEE Y W, et al. Quantified analysis of 2D dispersion of carbon nanotubes in hardened cement composite using confocal Raman microspectroscopy[J]. Cement and Concrete Research, 2023. DOI:10.1016/j.cemconres.2023.107102.
[11] 黄建华, 杨璐, 夏寅, 等. 古代文物表面常见天然有机物的显微共聚焦拉曼光谱研究[J]. 文物保护与考古科学, 2014, 26(3):1-6.
HUANG Jianhua, YANG Lu, XIA Yin, et al. The use of confocal micro Raman spectroscopy for the identification of natural organic materials used in cultural relics[J]. Sciences of Conservation and Archaeology, 2014, 26(3):1-6.
[12] FATEIXA S, WILHELM M, NOGUEIRA HIS, et al. SERS and Raman imaging as a new tool to monitor dyeing on textile fibres[J]. Journal of Raman Spectroscopy, 2016, 47(10):1239-1246.
doi: 10.1002/jrs.v47.10
[13] YANG B, DAI Y, ZHONG Y, et al. A study of the diffusion behaviour of reactive dyes in cellulose fibres using confocal Raman microscopy[J]. Review of Progress in Coloration and Related Topics, 2020, 136(6):503-511.
[14] KAZARIAN S G, CHAN K L A. Confocal Raman microscopy of supercritical fluid dyeing of polymers[J]. The Analyst, 2003, 128(5):499-503.
doi: 10.1039/b304056a
[15] FlEMING O S, STEPANEK F, KAZARIAN S G. Dye diffusion in polymer films subjected to supercritical CO2: confocal raman microscopy and modelling[J]. Macromolecular Chemistry and Physics, 2005, 206(11):1077-1083.
doi: 10.1002/macp.v206:11
[16] FlEMING O S, KAZARIAN S G, BACH E, et al. Confocal Raman study of poly(ethylene terephthalate) fibres dyed in supercritical carbon dioxide: dye diffusion and polymer morphology[J]. Polymer, 2005, 46(9):2943-2949.
doi: 10.1016/j.polymer.2005.02.067
[17] SICARDI S, MANNA L, BANCHERO M. Comparison of dye diffusion in poly(ethylene terephthalate) films in the presence of a supercritical or aqueous solvent[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4707-4713.
doi: 10.1021/ie000125c
[18] PARK G, KIM J, LEE Y W. A method for measuring the solubility of disperse Red 60 in supercritical carbon dioxide using variable-volume view cell with in-situ UV-Vis spectrometer[J]. The Journal of Supercritical Fluids, 2021. DOI:10.1016/j.supflu.2021.105302.
[19] 何曼君, 陈维孝, 董西侠. 高分子物理[M]. 上海: 复旦大学出版社, 2000: 116-118.
HE Manjun, CHEN Weixiao, DONG Xixia. Polymer physics[M]. Shanghai: Fudan University Press, 2000: 116-118.
[20] KONG X J, HUANG T T, CUI H S, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019, 33:1-11.
[1] 许高平, 孙以泽. 移动机械臂牵引卷装纱线的动态建模与控制[J]. 纺织学报, 2024, 45(01): 1-11.
[2] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[3] 朱维维, 施楣梧, 龙家杰. 基于超临界CO2流体的载药二醋酸纤维释放行为[J]. 纺织学报, 2023, 44(10): 31-38.
[4] 亓晓杰, 孙莉娜, 廖海洋, 马博谋, 俞建勇, 王学利, 刘修才. 超柔软高吸湿改性聚对苯二甲酸乙二醇酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(09): 27-34.
[5] 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94.
[6] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[7] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[8] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[9] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[10] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[11] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[12] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123.
[13] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[14] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[15] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!