纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 231-239.doi: 10.13475/j.fzxb.20240504701

• 机械与设备 • 上一篇    下一篇

基于机器视觉的浆纱机经轴区断纱故障检测

许纶有, 邹鲲(), 吴浩男   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2024-05-21 修回日期:2025-03-27 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 邹鲲(1969—),男,教授,博士。主要研究方向为光机电一体化设计、精密测量及微纳米研究及精密制造。E-mail:kouz@dhu.edu.cn
  • 作者简介:许纶有(1999—),男,硕士生。主要研究方向为机器视觉与机电一体化。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304001)

Broken yarn detection on warp beam zone of sizing machine based on machine vision

XU Lunyou, ZOU Kun(), WU Haonan   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2024-05-21 Revised:2025-03-27 Published:2025-06-15 Online:2025-07-02

摘要:

针对目前浆纱机经轴区断纱检测存在的时效性差、效率低等问题,提出了基于机器视觉的浆纱机经轴区断纱故障检测算法。通过分析相机采集的经轴区图像特征,研究了基于图像灭点的图像识别参数确定算法,包括穷举搜索自动灭点提取算法、纱辊轴心线标定算法、感兴趣区域自动选取算法。根据确定的图像识别参数,对原始图像进行预处理、边缘检测和椭圆拟合等步骤后,通过判断拟合椭圆与纱辊上下边线的位置关系,实现对经轴区断纱故障的识别。实际应用表明,所提出的经轴区断纱故障检测算法能及时准确地发现断纱,识别准确率可达0.91,有助于减少纱线浪费,提升浆纱生产质量和效率,展现出良好的实用价值与工业应用潜力。

关键词: 浆纱机经轴区, 断纱检测, 机器视觉, 图像灭点, 椭圆拟合

Abstract:

Objective Sizing is one of the key processes before weaving in the textile industry, and it requires the use of a sizing machine. During the process of sizing, the yarn on the warp beam of the sizing machine often breaks, leading to yarn accumulation and wastage. Currently, inspections for broken yarn on the warp beam zone of sizing machines predominantly rely on manual patrols, which suffer from poor timeliness and low efficiency. To address this issue, an algorithm was proposed in this research for detecting broken yarn faults in the warp beam zone of sizing machines based on machine vision.

Method By analyzing the image features captured by the cameras, an algorithm for determining the parameters of image recognition was investigated based on the theory of vanishing points, comprising an automatic vanishing point extraction algorithm, a warp roller axis calibration algorithm, and an automatic region of interest (ROI) selection algorithm. With the determined parameters of image recognition, the original images captured by the cameras was preprocessed, followed by edge detection and ellipse fitting. Subsequently, by assessing the positional relationship between the fitted ellipse and the top and bottom edges of the yarn roller, the recognition of broken yarn faults in the warp beam region was achieved.

Results The results demonstrated the significant effectiveness of the image recognition algorithm based on the theory of the vanishing point. Firstly, the automatic vanishing point extraction algorithm, using exhaustive search, successfully and consistently identified the vanishing point within a coordinate variation range of 5 pixels, ensuring the accuracy of subsequent analysis. Secondly, the vanishing point-centerline calibration method improved the accuracy of the axle-centerline identification by addressing the deviation issue of the dual-ellipse centerline method, providing a crucial geometric reference for broken yarn detection. Additionally, by utilizing the vanishing point information, the automatic selection algorithm for the ROI could accurately partition the ROI region that varies with the roller even in cases of smaller roller radius and increased background interference, enhancing the robustness of the algorithm. Based on the comprehensive algorithm mentioned above, the broken yarn detection algorithm performed edge detection on the preprocessed image and used ellipse fitting to fit the contour of the formed protruding circular white yarn loop. The relationship between the fitted ellipse and the roller edge lines was used to determine broken yarn faults, and the algorithm accurately identified the intersection points between the fitted ellipse and the upper and lower roller edge lines, showing good performance in detecting broken yarn faults in the middle and end sections. The detection algorithm took approximately 700 to 800 ms to process a single image. By concurrently processing images from multiple cameras, the time required to handle multiple images was significantly reduced. Experimental results indicated a 0.91 accuracy of the detection algorithm.

Conclusion Practical application shows that under most normal conditions in the sizing production process, the broken yarn fault identification algorithm for the warp beam zone can accurately and promptly detect broken yarn issues and trigger the corresponding alarms, meeting the needs of the project and actual industrial production. This detection system has been applied in relevant textile enterprises, confirming its feasibility.

Key words: warp beam zone of sizing machine, broken yarn detection, machine vision, image vanishing point, ellipse fitting

中图分类号: 

  • TP391.7

图1

GA310浆纱机示意图"

图2

经轴区断纱故障特征"

图3

经过同一灭点的平行圆柱相似性关系示意图"

图4

经轴区灭点提取结果"

图5

多组图像提取的灭点坐标"

图6

经轴端部金属圆盘拟合干扰椭圆"

图7

灭点-圆心连线法"

图8

感兴趣区域自动选取算法流程图"

图9

感兴趣区域自动选取算法处理结果"

图10

Canny边缘提取后的轮廓"

图11

中部断纱故障处理效果"

图12

端部断纱故障处理效果"

表1

算法处理流程时间"

采集
图像
图像
预处理
前置参数
确定
感兴趣
区域选取
故障判别
算法
150 10 350 180 50

图13

检测系统算法整体流程"

表2

混淆矩阵对算法评估结果"

设备状态 预测为故障 预测为正常
实际为故障 71 10
实际为正常 8 111
[1] 陈传亮, 王成群, 吕文涛, 等. 纱线张力传感器的研究进展[J]. 现代纺织技术, 2022, 30(4):32-41.
CHEN Chuanliang, WANG Chengqun, LV Wentao, et al. Advances in yarn tension sensor research[J]. Advanced Textile Technology, 2022, 30(4): 32-41.
doi: 10.19398/j.att.202111050
[2] CARVALHO V, JOSÉ G P, MONTEIRO J L, et al. Yarn parameterization based on mass analysis[J]. Sensors & Actuators A: Physical, 2004, 115(2/3):540-548.
[3] CHEN G F, SUN H C, ZHAI L L, et al. A capacitance based circuit design for yarn breaking detection[J]. Advanced Materials Research, 2012, 562: 1840-1843.
[4] ELDAR M. Line-laser-based yarn shadow sensing break sensor[J]. Optics & Lasers in Engineering, 2011, 49(3): 313-317.
[5] 宋晓亮, 刘建立, 徐阳, 等. 光电式环锭断纱在线检测系统[J]. 纺织学报, 2014, 35(8):94-98,103.
SONG Xiaoliang, LIU Jianli, XU Yang, et al. Online detection system for ring spinning yarn break based on photoelectric sensing[J]. Journal of Textile Research, 2014, 35(8): 94-98,103.
[6] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(6):141-146.
ZHANG Jianxin, LI Qi. On-line detection system for bobbin yarn density based on machine vision[J]. Journal of Textile Research, 2020, 41(6): 141-146.
[7] SCHNEIDER D, GLOY Y S, MERHOF D. Vision-based on-loom measurement of yarn densities in woven fabrics[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(4): 1063-1074.
[8] 史鹏飞, 白瑞林, 杨文浩, 等. 基于机器视觉的整经机断纱检测系统[J]. 东华大学学报(自然科学版), 2011, 37(6):750-754,760.
SHI Pengfei, BAI Ruilin, YANG Wenhao, et al. Broken yarn detection system for warp assembly machine based on machine vision[J]. Journal of Donghua University (Natural Science), 2011, 37(6): 750-754,760.
[9] 周其洪, 彭轶, 岑均豪, 等. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(5):163-169.
ZHOU Qihong, PENG Yi, CEN Junhao, et al. Yarn break localization method for fine yarn splicing robot based on machine vision[J]. Journal of Textile Research, 2022, 43(5): 163-169.
[10] PEREIRA F, CARVALHO V, SOARES F, et al. Computer vision techniques for detecting yarn defects[M]// Applications of Computer Vision in Fashion and Textiles. Cambridge: Woodhead Publishing, 2018: 123-145.
[11] CHAN J P, PALMER G S. Machine vision-applications in industry[C]// IEE Colloquium on Application of Machine Vision. London: IEE, 1995: 1-6.
[12] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge: Cambridge University Press, 2003: 213-218.
[13] ROTHER C. A new approach to vanishing point detection in architectural environments[J]. Image and Vision Computing, 2002, 20(9): 647-655.
[14] BAZIN J C, POLLEFEYS M. 3-line RANSAC for orthogonal vanishing point detection[C]// 2012 IEEE/rsj International Conference on Intelligent Robots and Systems. [S.l.]:IEEE, 2012: 4282-4287.
[15] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
doi: 10.1162/106365600568202 pmid: 10843520
[1] 李吉国, 景军锋, 程为, 王永波, 刘薇. 基于机器视觉的玻璃纤维纱团外观缺陷检测系统设计[J]. 纺织学报, 2025, 46(05): 243-251.
[2] 任柯, 周衡书, 魏瑾瑜, 闫文君, 左言文. 基于机器视觉技术的百褶裙动态美感评价[J]. 纺织学报, 2024, 45(12): 189-198.
[3] 任佳伟, 周其洪, 陈唱, 洪巍, 岑均豪. 基于机器视觉的交叉缠绕式筒子纱位姿检测方法[J]. 纺织学报, 2024, 45(11): 207-214.
[4] 陈育帆, 郑小虎, 徐修亮, 刘冰. 基于机器视觉的缝纫线迹缺陷检测方法[J]. 纺织学报, 2024, 45(07): 173-180.
[5] 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173.
[6] 杨金鹏, 景军锋, 李吉国, 王渊博. 基于机器视觉的玻璃纤维合股纱缺陷检测系统设计[J]. 纺织学报, 2024, 45(05): 193-201.
[7] 白恩龙, 张周强, 郭忠超, 昝杰. 基于机器视觉的棉花颜色检测方法[J]. 纺织学报, 2024, 45(03): 36-43.
[8] 葛苏敏, 林瑞冰, 徐平华, 吴思熠, 罗芊芊. 基于机器视觉的曲面枕个性化定制方法[J]. 纺织学报, 2024, 45(02): 214-220.
[9] 史伟民, 韩思捷, 屠佳佳, 陆伟健, 段玉堂. 基于机器视觉的空纱筒口定位方法[J]. 纺织学报, 2023, 44(11): 105-112.
[10] 陈罡, 金贵阳, 吴菁, 罗千. 智能服装缝制关键技术及成套装备研发[J]. 纺织学报, 2023, 44(08): 197-204.
[11] 陈泰芳, 周亚勤, 汪俊亮, 徐楚桥, 李冬武. 基于视觉特征强化的环锭纺细纱断头在线检测方法[J]. 纺织学报, 2023, 44(08): 63-72.
[12] 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146.
[13] 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204.
[14] 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77.
[15] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!