纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 109-115.doi: 10.13475/j.fzxb.20240506301

• 纺织工程 • 上一篇    下一篇

基于物理约束的纬编针织物动态形变模拟

梁金星1,2, 李东盛2, 韩开放2, 胡新荣2, 彭佳佳3(), 李立军4   

  1. 1.青岛大学 自动化学院, 山东 青岛 266071
    2.武汉纺织大学 计算机与人工智能学院, 湖北 武汉 430200
    3.常熟理工学院 纺织服装与设计学院, 江苏 常熟 215500
    4.宁波慈星股份有限公司, 浙江 宁波 315300
  • 收稿日期:2024-05-28 修回日期:2024-11-22 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 彭佳佳(1990—),女,讲师,博士。主要研究方向为针织产品设计与数字化。E-mail:202000031@cslg.edu.cn
  • 作者简介:梁金星(1989—),男,校聘副教授,博士。主要研究方向为针织仿真、图像处理等。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J202209);湖北省服装信息化工程技术研究中心开放课题资助项目(2022HBCI03)

Dynamic deformation simulation of weft knitted fabrics based on physical constraints

LIANG Jinxing1,2, LI Dongsheng2, HAN Kaifang2, HU Xinrong2, PENG Jiajia3(), LI Lijun4   

  1. 1. School of Automation, Qingdao University, Qingdao, Shandong 266071, China
    2. School of Computer and Artificial Intelligence, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. School of Textiles, Garments and Design, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    4. Ningbo Cixing Co., Ltd., Ningbo, Zhejiang 315300, China
  • Received:2024-05-28 Revised:2024-11-22 Published:2025-03-15 Online:2025-04-16

摘要: 为模拟针织物纱线间的相互作用和线圈形态变化,提出一种基于物理约束的针织物动态形变模拟方法。首先,将纱线划分为多个胶囊几何体,通过构建距离约束、罚函数约束、碰撞约束和摩擦约束以及阻尼,有效模拟了线圈嵌套结构、纱线间摩擦行为、纱线的弹性响应以及纱线碰撞等关键物理现象;然后,基于NVIDIA PhysX 的物理仿真实现过程,实现了不同针织花型的仿真。结果表明:模型可实现不同针织花型的形变,展示针织花型在外力作用下纱线弯曲、拉伸和扭曲的形变特征;仿真效果与真实样品具有较好一致性和逼真度,验证了所提出模型的准确性。该研究为针织物形变模拟领域提供了新的视角,对针织花型设计、模拟软件开发以及针织工艺优化具有重要价值。

关键词: 针织物, 形变模拟, 物理约束, 针织花型仿真, 胶囊体

Abstract:

Objective This research aims to develop a dynamic deformation simulation method for weft-knitted fabrics based on physical constraints, addressing the complex interactions and morphological changes of yarns in knitted structures. The significance of this work lies in providing a new perspective for the design of knitted patterns, the development of simulation software, and the optimization of knitting processes.

Method The method of this research encompasses the development of a dynamic deformation simulation for weft-knitted fabrics based on a comprehensive physical model. The yarns are represented as a series of discrete capsule geometries, each corresponding to the physical properties of actual yarns. The simulation framework integrates several key components,including distance constraints to maintain yarn integrity and prevent over-extension, penalty functions to simulate yarn bending and ensure the yarn's resistance to deformation, collision constraints to prevent interpenetration of yarn segments ensuring that the simulated structure respects the physical space occupied by each yarn, and friction constraints to mimic the sliding behavior between yarns, which is essential for the stability of the knitted structure. Damping is introduced to dissipate kinetic energy and facilitate the convergence of the simulation to a stable state. The simulation leverages NVIDIA PhysX, a physics engine, to manage complex interactions and constraints. The process involves initializing capsule-shaped rigid bodies, applying constraints, and iteratively updating positions and rotations within a simulation loop to achieve a steady state of yarn-level knitting patterns. The simulation parameters and constraints are carefully calibrated to reflect the mechanical properties of the yarns and the structural characteristics of the knitted fabric. The algorithm iteratively updates the control points and render model to ensure that the deformation and motion of the fabric throughout the simulation are coherent and accurate. The simulation results are then compared with real samples to validate the accuracy and reliability of the model, providing a detailed and nuanced representation of weft-knitted fabric deformation.

Results The simulation results demonstrate the model's accuracy by comparing with real samples. The proposed method effectively simulates the interlocking structure of loops, frictional behavior between yarns, their elastic response, and collisions. The study provides a new perspective in the field of knitted fabric deformation simulation, showcasing the cop ability to simulate different knitted patterns with high fidelity. The physical constraints ensure the stability of the loop structure during deformation, allowing for elastic transformation and accurately reflecting the deformation characteristics such as bending, stretching, and twisting of yarns under external forces.

Conclusion The proposed physical constraint-based simulation method offers a precise and realistic representation of the deformation behavior of weft-knitted fabrics under various external forces. The consistency between the simulation results and the real fabric was demonstrated through a comparison with actual samples. This research is significant for the development of knitting pattern design software, simulation software development, and optimization of knitting processes. The findings also provide insights for future work in enhancing the simulation's efficiency and expanding its applicability to more complex fabric structures.

Key words: knitted fabric, deformation simulation, physical constraints, knitted pattern simulation, capsule body

中图分类号: 

  • TS101

图1

平针组织的纱线模型"

图2

联合组织的纱线模型"

图3

胶囊体距离示意图"

图4

用于模拟弯曲的支撑杆"

表1

不同线圈类型的控制点三维坐标"

控制点 平针 集圈 移圈
(左移一)
移圈
(右移一)
P0 0, 0.272, 0 0, 0.272, 0 0, 0.272, 0 0, 0.272, 0
P1 0.304, 0.415, 0.500 0.304, 0.415, 0.25 0.304, 0.415, 0.250 0.304, 0.415, 0.250
P2 0.347, 0.558, 0.750 0.347, 0.558, 0.50 0.347, 0.558, 0.500 0.347, 0.558, 0.500
P3 0.245, 1.000, 1.000 0.304, 1.000, 1.000 -0.330, 1.000, 1.250 0.70, 1.00, 1.000
P4 0.145, 1.441,0.500 0.245, 2.000, 1.250 -0.750, 1.420, 1.000 1.300, 1.78,0.250
P5 0.178, 1.585, 0.250 0.270, 2.840, 0.250 -0.870, 1.840, 0.500 1.500, 2.000, 0
P6 0.500, 1.728, 0 0.500, 3.000, 0 -0.760, 1.980, 0.250 1.760, 1.980, 0.250
P7 0.822, 1.585, 0.250 0.730, 2.840, 0.250 -0.500, 2.000, 0 1.870, 1.840, 0.500
P8 0.855, 1.441, 0.500 0.755, 2.000, 1.250 -0.300, 1.780, 0.250 1.750, 1.420, 1.000
P9 0.752, 1.000, 1.000 0.696, 1.000, 1.000 0.300, 1.000, 1.000 1.330, 1.000, 1.250
P10 0.653, 0.558, 0.750 0.653, 0.558, 0.750 0.653, 0.558, 0.500 0.653, 0.558, 0.500
P11 0.696, 0.415, 0.500 0.696, 0.415, 0.500 0.696, 0.415, 0.250 0.696, 0.415, 0.250
P12 1.000, 0.272, 0 1.000, 0.272, 0 1.00, 0.272, 0 1.000, 0.272, 0

图5

实现仿真的流程图"

图6

复杂组织的针织物仿真及实物图"

[1] PROVOT X. Deformation constraints in a mass-spring model to describe rigid cloth behavior[C]// Graphics Interface. Canadian Information Processing Society, Canada: Canadian Human-Computer Communications Society, 1995: 147-157.
[2] 雷惠, 丛洪莲, 张爱军, 等. 基于质点模型的横编织物结构研究与计算机模拟[J]. 纺织学报, 2015, 36(2):111-115.
LEI Hui, CONG Honglian, ZHANG Aijun, et al. Research of flat knitted structure and computer simulation based on particle model[J]. Journal of Textile Research, 2015, 36(2): 111-115.
[3] SHA Sha, JIANG Gaoming, MA Pibo, et al. 3-D dynamic behaviors simulation of weft knitted fabric based on particle system[J]. Fiber Polymers, 2015, 16(8):1812-1817.
[4] 沙莎, 蒋高明, 张爱军, 等. 纬编针织物线圈建模与变形三维模拟[J]. 纺织学报, 2017, 38(2):177-183.
SHA Sha, JIANG Gaoming, ZHANG Aijun, et al. Three-dimensional modeling and deformation for weft knitted fabric loops[J]. Journal of Textile Research, 2017, 38(2): 177-183.
[5] PENG Jiajia, JIANG Gaoming, XIA Fenglin, et al. Deformation and geometric modeling in three-dimensional simulation of fancy weft-knitted fabric[J]. Textile Research Journal, 2019, 90(13/14): 1527-1536.
[6] 常辰玉, 王雨薇, 原旭阳, 等. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(1):101-105.
CHANG Chenyu, WANG Yuwei, YUAN Xuyang, et al. Dynamic deformation simulation of weft knitted fabrics based on improved mass-spring model at interlacing points[J]. Journal of Textile Research, 2024, 45(1):101-105.
[7] HU Haodong, LI Tong, KE Wei, et al. Simulation of weft knitted fabric using three-dimensional yarn loops and grid and spring mass models[J]. Advances in Materials Science and Engineering, 2023. DOI: 10.1155/2023/9757748.
[8] JONATHAN M K, DOUG L J, STEVE M. Simulating knitted cloth at the yarn level[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9.
[9] WU Kui, GAO Xifeng, ZACHARY F, et al. Stitch meshing[J]. ACM Transactions on Graphics, 2018, 37(4):1-14.
[10] GABRIEL C, JORGE L, MIGUEL A O. Efficient simulation of knitted cloth using persistent contacts[C]// FLORENCE B, STELIAN C, SHINJIRO S. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Vancouver: ACM Siggraph, 2014: 55-61.
[11] GABRIEL C, JORGE L, MIGUEL A O. Yarn-level cloth simulation with sliding persistent contacts[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(9): 2236-2245.
[12] JONATHAN L, RUNDONG W, SCHWEICKART E, et al. Interactive design of periodic yarn-level cloth patterns[J]. ACM Transactions on Graphics, 2018, 37(6): 1-15.
[13] MACKLIN M, STOREY K, MICHELLE L, et al. Small steps in physics simulation[C]// FLORENCE B, STELIAN C, SHINJIRO S.Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation. California: ACM Siggraph, 2019: 39-45.
[1] 江文杰, 郭明瑞, 高卫东. 棉/涤纶短纤皮芯纱及其织物的力学性能[J]. 纺织学报, 2025, 46(03): 49-55.
[2] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[3] 韩炜, 邢晓梦, 张海宝, 姜茜, 刘天威, 卢佳浩, 闫志强, 巩继贤, 吴利伟. 基于粒子群算法对纬编针织物Johnson-Champoux-Allard模型参数反分析研究[J]. 纺织学报, 2024, 45(10): 103-112.
[4] 葛美彤, 董智佳, 丛洪莲, 丁玉琴. 凹凸点阵双面织物的结构与湿热管理评价[J]. 纺织学报, 2024, 45(07): 47-54.
[5] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[6] 胡旭东, 汤炜, 曾志发, 汝欣, 彭来湖, 李建强, 王博平. 基于轻量化卷积神经网络的纬编针织物组织结构分类[J]. 纺织学报, 2024, 45(05): 60-69.
[7] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[8] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[9] 俞旭良, 丛洪莲, 孙菲, 董智佳. 仿猪笼草口缘结构功能针织物的设计与应用[J]. 纺织学报, 2023, 44(07): 72-78.
[10] 史伟民, 简强, 李建强, 汝欣, 彭来湖. 基于非线性扩散和多特征融合的提花针织物疵点检测[J]. 纺织学报, 2023, 44(07): 86-94.
[11] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
[12] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[13] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[14] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[15] 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!