纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 20-28.doi: 10.13475/j.fzxb.20240602101

• 纤维材料 • 上一篇    下一篇

苄基缩水甘油醚改性环氧类玻璃高分子材料的自修复与再加工性能

黎靖康1, 黄亮1, 陈诗诗1, 毕曙光1(), 冉建华1, 唐加功2   

  1. 1.武汉纺织大学 纺织新材料与先进加工全国重点实验室, 湖北 武汉 430200
    2.武汉精隧科技有限公司, 湖北 武汉 430058
  • 收稿日期:2024-06-11 修回日期:2024-10-29 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 毕曙光(1972—),女,特聘教授,博士。主要研究方向为功能复合材料和智能纺织品。E-mail:sgbi@wtu.edu.cn
  • 作者简介:黎靖康(2002—),男,硕士生。主要研究方向为功能复合材料。
  • 基金资助:
    湖北省科技计划重点研发项目(2023BEB012);湖北省纺织新材料及应用重点实验室(武汉纺织大学)开放基金项目(FZXCL202318);材料成形与模具技术全国重点实验室(华中科技大学)开放基金项目(P2024-009)

Self-healing and reprocessing performance of benzyl glycidyl ether modified epoxy vitrimer

LI Jingkang1, HUANG Liang1, CHEN Shishi1, BI Shuguang1(), RAN Jianhua1, TANG Jiagong2   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Jingsui Technology Co., Ltd., Wuhan, Hubei 430058, China
  • Received:2024-06-11 Revised:2024-10-29 Published:2025-04-15 Online:2025-06-11

摘要: 针对环氧类玻璃高分子材料自修复时间长和再加工温度高的问题,通过引入小分子活性稀释剂苄基缩水甘油醚(BGE)调控网络结构,增加聚合物链段迁移率,提高酯交换反应速率。进一步通过分子结构分析,揭示了其固化机制和动态键交换机制。结果表明:当双酚F型环氧树脂(BPF-170)与BGE的环氧当量比例为7∶3时,改性环氧类玻璃高分子TEPV-BGE3的玻璃化转变温度从87.2 ℃降至60.4 ℃;拓扑网络冻结转变温度从80 ℃降至52 ℃;在120 ℃下,自修复时间从132.3 min缩短至25.3 min;碳纤维层压板在180 ℃、60 min内可再加工;该材料热稳定性高,热失重5%所对应的温度为270 ℃,拉伸强度达(17.81 ± 1.05) MPa。

关键词: 环氧类玻璃高分子材料, 碳纤维复合材料, 动态酯键, 自修复, 苄基缩水甘油醚

Abstract:

Objective The primary objective of this research is to enhance self-healing and reprocessing capabilities of epoxy vitrimers, which are integral to sustainable recycling and reuse of carbon fiber reinforced polymers (CFRPs) in high-performance industries. The significance of this work is underscored by the need to overcome the limitations of traditional epoxy resins, which are characterized by irreversible covalent bonds that hinder their reprocessability and recyclability. By introducing the small molecule reactive diluent benzyl glycidyl ether (BGE), this study aims to adjust the network structure, thereby accelerating the ester exchange reaction rate and reducing the self-healing time and reprocessing temperature.

Method The methodology of this research involves synthesis of epoxy vitrimers through the incorporation of BGE into bisphenol F epoxy resin (BPF-170) and methyl tetrahydrophthalic anhydride (MTHPA), catalyzed by zinc acetylacetonate (ZAA). The epoxy equivalent ratio of BPF-170 to BGE was systematically varied to fine-tune the network structure. The synthesized materials were characterized using a suite of analytical techniques, including Fourier-transform infrared spectroscopy for chemical structure analysis, differential scanning calorimetry for thermal property determination, thermogravimetric analysis for thermal stability assessment, dynamic mechanical analysis (DMA) for thermomechanical property evaluation, and tensile tests for mechanical performance measurement.

Results The modified epoxy vitrimer formulation TEPV-BGE3, with a BPF-170 to BGE epoxy equivalent ratio of 7∶3, exhibited a substantially reduced glass transition temperature (Tg) from 87.2 to 60.4 ℃, and a decreased vitrimer freezing temperature (Tv) from 80 to 52 ℃. The material maintains high thermal stability, with a 5% weight loss temperature (T95%) of 270 ℃ and a tensile strength of (17.81 ± 1.05) MPa. The self-healing time at 120 ℃ for a 100 μm wide scratch is significantly reduced from 132.3 min to 25.3 min, demonstrating a remarkable improvement in self-healing efficiency. Furthermore, the reprocessing capability of carbon fiber laminates was enhanced, allowing for reshaping within 60 min at 180 ℃. The molecular structure analysis elucidated the curing mechanism and the dynamic ester bond exchange process, indicating the successful introduction of a reversible crosslinking system that facilitates self-healing and reprocessing.

Conclusion The integration of BGE into epoxy vitrimers has been demonstrated to enhance significantly their self-healing and reprocessing properties. The optimized formulation, TEPV-BGE3, exhibits a reduced Tg of 60.4 ℃ and Tv of 52 ℃, enabling faster self-healing at 120 ℃ and efficient reprocessing of carbon fiber laminates within 60 min at 180 ℃. The material's high thermal stability, with a 5% weight loss temperature (T95%) of 270 ℃, and a tensile strength of (17.81 ± 1.05) MPa indicate its suitability for demanding applications. The findings suggest that with precise control over the network structure and composition, it is possible to tailor the properties of epoxy vitrimers to meet specific application requirements while maintaining high thermal and mechanical performance.

Key words: expoxy vitrimer, carbon fiber composite material, dynamic ester bond, self-healing, benzyl glycidyl ether

中图分类号: 

  • TB332

表1

实验原料及配方"

样品 质量/g
BPF-170 BGE ZAA MTHPA
TEPV 10 0 0.85 4.89
TEPV-BGE1 9 1.31 0.85 4.89
TEPV-BGE2 8 2.61 0.85 4.89
TEPV-BGE3 7 3.92 0.85 4.89
TEPV-BGE4 6 5.23 0.85 4.89

图1

环氧类玻璃高分子材料的FT-IR曲线"

图2

环氧类玻璃高分子材料固化后DSC升温曲线和热膨胀曲线图"

图3

环氧类玻璃高分子材料的拉伸应力-应变曲线"

图4

环氧类玻璃高分子材料热失重曲线"

表2

自修复和热焊接及再加工时间"

样品 自修复时间 热焊接时间 再加工时间
TEPV 132.3 ± 5.5 31.0 ± 3.6 6.1 ± 0.4
TEPV-BGE1 91.0 ± 3.6 23.7 ± 2.1 4.7 ± 0.5
TEPV-BGE2 67.7 ± 4.5 16.3 ± 1.5 3.4 ± 0.3
TEPV-BGE3 25.3 ± 3.0 6.0 ± 1.0 2.3 ± 0.2
TEPV-BGE4 5.7 ± 0.6 2.3 ± 0.6 1.6 ± 0.1

图5

环氧类玻璃高分子材料及其碳纤维复合材料自修复及可再加工实拍照片"

图6

TEPV的固化机制及动态酯键交换示意图"

图7

TEPV-BGE的固化机制及动态酯键交换示意图"

图8

环氧类玻璃高分子材料的储能模量和tanδ曲线图"

表3

环氧类玻璃高分子材料的热性能参数"

样品 Er/MPa 交联密度/(mol·m-3)
TEPV 12.50 1 282.26
TEPV-BGE1 7.45 795.20
TEPV-BGE2 3.44 391.32
TEPV-BGE3 2.44 283.41
TEPV-BGE4 1.20 145.15
[1] CAPRICHO J C, FOX B, HAMEED N. Multifunctionality in epoxy resins[J]. Polymer Reviews, 2019, 60: 1-41.
[2] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6): 153-158.
RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress on the recycling and reuse of carbon fiber reinforced resin matrix composites[J]. Journal of Textile Research, 2019, 40 (6): 153-158.
[3] CHEN M, ZHOU L, CHEN Z, et al. Multi-functional epoxy vitrimers: controllable dynamic properties, multiple-stimuli response, crack-healing and fracture-welding[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2022.109364.
[4] YANG Y, XU Y S, JI Y, et al. Functional epoxy vitrimers and composites[J]. Progress in Materials Science, 2021. DOI: 10.1016/j.pmatsci.2020.100710.
[5] LIU X, FAN W F, YANG X N. Bio based epoxy anhydride thermosets from multi-armed cardanol-derived epoxy oligomers[J]. Polymers for Advanced Technologies, 2022, 33(8): 2571-2580.
[6] SI H W, ZHOU L, WU Y P, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks[J]. Composites Part B: Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108278.
[7] FEI M G, CHANG Y C, HAO C, et al. Highly engineerable schiff base polymer matrix with facile fiber composite manufacturability and hydrothermal recyclability[J]. Composites Part B: Engineering, 2023. DOI: 10.1016/j.compositesb.2022.110366.
[8] CVEK M, SEVCIK J, VILCAKOVA J, et al. Self healing recyclable bio based magnetic composites with boronic ester vitrimer matrix[J]. Applied Materials Today, 2023. DOI: 10.1016/j.apmt.2023.101997.
[9] KUMAR A, CONNAL L A. Biobased transesterification vitrimers[J]. Macromolecular Rapid Communications, 2023. DOI: 10.1002/marc.202200892.
[10] 李博, 樊威, 高兴忠, 等. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(1): 15-20.
LI Bo, FAN Wei, GAO Xingzhong, et al. Closed loop recycling of carbon fiber reinforced glass epoxy polymer composites[J]. Journal of Textile Research, 2022, 43(1): 15-20.
[11] LI W B, XIAO L H, HUANG J R, et al. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: synthesis and structure-property relation-ship[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2022.109575.
[12] LIU T, ZHAO B M, ZHANG J W. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification[J]. Polymer, 2020. DOI: 10.1016/j.polymer.2020.122392.
[13] NIU X L, WANG F F, LI X H, et al. Using Zn2+ ionomer to catalyze transesterification reaction in epoxy vitrimer[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5698-5706.
[14] FANG M, LIU X, FENG Y Z, et al. Influence of Zn2+ catalyst stoichiometry on curing dynamics and stress relaxation of polyester-based epoxy vitrimer[J]. Polymer, 2023. DOI: 10.1016/j.polymer.2023.126010.
[15] TANG Q, JIANG J, LI J, et al. Effects of chemical composition and cross-linking degree on the thermo-mechanical properties of bio-based thermosetting resins: a molecular dynamics simulation study[J]. Polymers, 2024. DOI: 10.3390/polym16091229.
[16] ZHAO S, ABU-OMAR M M. Catechol mediated glycidylation toward epoxy vitrimers/polymers with tunable properties[J]. Macromolecules, 2019, 52(10): 3646-3654.
[17] ZHAO S Z, YANG H K, WANG D, et al. A simple, efficient route to modify the properties of epoxy dynamic polymer networks[J]. Soft Matter, 2022, 18(2): 382-389.
[18] LEE J, NANTHANANON P, KIM A, et al. Malleable and recyclable thermoset network with reversible β-hydroxyl esters and disulfide bonds[J]. Journal of Applied Polymer Science, 2023. DOI: 10.1002/app.53369.
[19] PENG J Y, XIE S Y, LIU T, et al. High performance epoxy vitrimer with superior self healing, shape memory, flame retardancy, and antibacterial properties based on multifunctional curing agent[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110109.
[20] CHEN M F, LUO W H, LIN S F, et al. Recyclable, reprocessable, self healing elastomer like epoxy vitrimer with low dielectric permittivity and its closed loop recyclable carbon fiber reinforced composite[J]. Composites Part B: Engineering, 2023. DOI: 10.1016/j.compositesb.2023.110666.
[21] BOHRA B S, SINGH P, RANA A, et al. Specific functionalized graphene oxide based vitrimer epoxy nanocomposites for self healing applications[J]. Composites Science and Technology, 2023. DOI: 10.1016/j.compscitech.2023.110143.
[22] DAI C N, SHI Y, LI Z, et al. The design, synthesis, and characterization of epoxy vitrimers with enhanced glass transition temperatures[J]. Polymers, 2023. DOI: 10.3390/polym15224346.
[23] CAO Q, LI J H, LIU B T, et al. Toward versatile biobased epoxy vitrimers by introducing aromatic N-heterocycles with stiff and flexible segments[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.143702.
[24] VASHCHUK A, KOBZAR Y. Chemical welding of polymer networks[J]. Materials Today Chemistry, 2022. DOI: 10.1016/j.mtchem.2022.100803.
[25] YANG Y, PENG G R, WU S, et al. A repairable anhydride epoxy system with high mechanical properties inspired by vitrimers[J]. Polymer, 2018, 159: 162-168.
[26] FENG Y, QIU H, DENG P H, et al. Tuning the static and dynamic properties of epoxy vitrimers through modulation of cross link density[J]. European Polymer Journal, 2023. DOI: 10.1016/j.eurpolymj.2023.112308.
[1] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[2] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[3] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[4] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!