纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 38-46.doi: 10.13475/j.fzxb.20240603001

• 纤维材料 • 上一篇    下一篇

增强型聚丙烯中空纤维膜制备及其油水分离性能

林伟嘉1,2, 冀大伟1,2(), 田徐泳1,2, 王春蕾1,2, 薛昊龙1,2, 肖长发1,2   

  1. 1.上海工程技术大学 纤维材料研究中心, 上海 201620
    2.上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2024-06-13 修回日期:2024-09-20 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 冀大伟(1992—),男,副教授,博士。主要研究方向为纤维分离膜材料。E-mail: jdw1106@sues.edu.cn
  • 作者简介:林伟嘉(1997—),男,硕士。主要研究方向为聚丙烯中空纤维膜。
  • 基金资助:
    中国科协青年人才托举工程项目(YESS20230306)

Fabrication of braided tube reinforced polypropylene hollow fiber membrane for oil-water separation

LIN Weijia1,2, JI Dawei1,2(), TIAN Xuyong1,2, WANG Chunlei1,2, XUE Haolong1,2, XIAO Changfa1,2   

  1. 1. Fiber Materials Research Center, Shanghai University of Engineering Science, Shanghai 201620, China
    2. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2024-06-13 Revised:2024-09-20 Published:2025-04-15 Online:2025-06-11

摘要: 为有效从油水混合物及乳液中分离油或水,以聚丙烯(PP)为成膜聚合物,大豆油为稀释剂,二氧化硅(SiO2)和二维片层结构石墨烯(GE)为疏水添加剂,采用编织管增强/热致相分离(TIPS)联用法制备了增强型疏水PP中空纤维膜。通过改变GE添加量研究了其对膜形貌、疏水性能、渗透及分离性能等的影响。结果表明:随着GE质量分数的提高,膜的孔隙率、平均孔径和油通量呈现先增大后减小的趋势;膜表面疏水性、亲油性和爆破强度随GE添加量的增加而提高;当GE质量分数为0.5%时,膜的水接触角达132.4 °,平均孔径为0.16 μm,断裂强度达159 MPa,对煤油包水、大豆油包水、正己烷包水3种乳液的分离效率分别为98.9%、98.4%、98.6%,对应的通量为34.8、29.6、52.3 L/(m2·h)。

关键词: 热致相分离, 聚丙烯, 石墨烯, 增强型中空纤维膜, 油水分离

Abstract:

Objective In recent years, with the rapid development of modern industry, the amount of oily wastewater discharged from industrial production and oil spills caused by frequent maritime accidents have become an important source of water pollution, causing catastrophic damage to the environment. Membrane separation technology is an excellent choice for separating oil-water mixture and emulsion due to its high efficiency, low energy consumption and environmental protection. In this research, reinforced hydrophobic PP hollow fiber membranes were prepared using a braided tube reinforcement/thermally induced phase separation coupling method. This study provides a reference for the preparation of PP/GE composites with high performance.

Method A hydrophobic and oleophilic polypropylene (PP) hollow composite fiber membrane with a dual continuous pore structure was prepared by simple blending modification using a combination of braided tube reinforcement and thermally induced phase separation (TIPS) method. The effect of graphene (GE) doping on the morphology, mechanical properties, and permeability of hollow fiber membranes was studied using PP as the film-forming polymer, soybean oil as the diluent, silica (SiO2), and two-dimensional layered structure GE as hydrophobic dopants.

Results A small amount of GE doping was used as a non-homogeneous phase nucleating agent, providing more nucleation sites for the uniformly dispersed GE and making the membrane spherical structure more homogeneous. With increasing GE content, the spherical crystal structure of the membrane became less, and more branch-like structures appeared. With increasing GE content, the membrane demonstrated opposite trend to the above, and the interconnected porous structure got decreased. This is due to the increase in the viscosity of the casting fluid and the deterioration of the fluidity. The introduction of GE into the PP membrane-forming system was demonstrated through infrared and Raman testing. The mechanical properties of PP hollow fiber membranes showed a slight improvement with the doping of G, while the porosity and average pore size were seen to increase and then decrease. GE doping improved the hydrophobic and lipophilic properties of the membrane. In the pure oil flux and oil-water separation test, significant improvement was witnessed. The kerosene flux of the optimal M4 membrane reached 110 L/(m2·h), and the kerosene in water, soybean oil in water, and n-hexane in water emulsion fluxes were 34.8 L/(m2·h), 29.6 L/(m2·h), and 52.3 L/(m2·h), respectively, and the separation efficiency for the three situations was 98.9%, 98.4%, and 98.6%, respectively.

Conclusion In this study, soybean oil was used as a diluent, while SiO2 and two-dimensional layered GE were applied as hydrophobic dopants. TIPS braided tube reinforcement technology was used to successfully prepare PET-braided tube reinforced PP hollow fiber membranes. The effects of different GE contents on membrane morphology, pore size distribution, oil-water separation, and other aspects were studied. The results indicate that the doping of GE can alter the pore structure, hydrophobicity, and permeability of PP hollow fiber membranes. With the increase of GE doping amount, the water contact angle and roughness of the membrane gradually increase, and the average pore size, oil flux, and oil-water separation performance show a trend of first increasing and then decreasing. When the GE doping amount is 0.5%, the prepared M4 film has a water contact angle of 132.4 °, exhibiting excellent hydrophobic and lipophilic properties. The kerosene flux was further measured to be 110 L/(m2·h), and the flux of kerosene in water, soybean oil in water, and n-hexane in water emulsion were 34.8 L/(m2·h), 29.6 L/(m2·h), and 52.3 L/(m2·h), respectively. The separation efficiency was 98.9%, 98.4%, and 98.6%.

Key words: thermal induced phase separation, polypropylene, graphene, reinforced hollow fiber, oil-water separation

中图分类号: 

  • TQ340.6

图1

增强型PP中空纤维膜制备流程图"

图2

不同GE添加量制备的PP膜的形貌照片"

图3

增强型PP中空纤维膜的红外光谱及拉曼光谱图"

表1

PP膜结构表征"


编号
外径/
mm
分离层
厚度/μm
平均孔径/
μm
孔隙率/
%
M1 2.05±0.08 43.1±0.85 0.10 35.88±1.32
M2 2.06±0.10 51.8±0.83 0.11 48.41±1.15
M3 2.05±0.09 54.3±0.47 0.12 50.54±1.55
M4 2.06±0.15 55.7±0.78 0.16 53.85±1.48
M5 2.04±0.03 58.1±0.82 0.13 42.88±1.92

图4

增强型PP中空纤维膜的力学性能"

图5

PP中空纤维膜孔径分布"

图6

增强型PP中空纤维膜的表面润湿性能"

图7

增强型PP中空纤维膜的煤油通量"

图8

油水分离和油包水乳液分离原理图"

图9

油包水乳液通量与分离效率"

图10

油包水乳液分离前后对比"

[1] LI X, ZHU Y, ABBASSI R, et al. A probabilistic framework for risk management and emergency decision-making of marine oil spill accidents[J]. Process Safety and Environmental Protection, 2022, 162: 932-943.
[2] LI S, DONG R, MUSTEATA V E, et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation[J]. Science, 2022, 377(6614): 1555-1561.
doi: 10.1126/science.abq0598 pmid: 36173852
[3] SANKARANARAYANAN S, LAKSHMI D S, VIVEKANANDHAN S, et al. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation[J]. Sustainable Materials and Technologies, 2021. DOI: 10.1016/j.susmat.2021.e00268.
[4] 王玉周, 周梦洁, 姜圆金, 等. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(7): 42-49.
WANG Yuzhou, ZHOU Mengjie, JIANG Yuanjin, et al. Preparation and oil-water emulsion separation performance of amidoximated polyacrylonitrile nanofiber membrane[J]. Journal of Textile Research, 2023, 44(7): 42-49.
[5] ARIONO D, WARDANI A K. Modification and applications of hydrophilic polypropylene membrane[J]. IOP Conference Series: Materials Science and Engineering, 2017. DOI: 10.1088/1757-899X/214/1/012014.
[6] LIU M, LIU S, XU Z, et al. Formation of microporous polymeric membranes via thermally induced phase separation: a review[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 57-75.
doi: 10.1007/s11705-016-1561-7
[7] TANG Y H, HE Y D, WANG X L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: dissipative particle dynamics simulation and its experimental verification[J]. Journal of Membrane Science, 2012, 409/410: 164-172.
[8] YAVE W, QUIJADA R, ULBRICHT M, et al. Syndiotactic polypropylene as potential material for the preparation of porous membranes via thermally induced phase separation (TIPS) process[J]. Polymer, 2005, 46(25): 11582-11590.
[9] YANG S, WU C, JI D, et al. Preparation and characterization of fiber braided tube reinforced polyethylene hollow fiber membranes via thermally induced phase separation[J]. Journal of Environmental Chemical Engineering, 2023. DOI. 10.1016/j.jece.2023.109375.
[10] FENG H, JI D, ZHANG X, et al. Preparation of high-flux polyethylene hollow fiber microfiltration membranes with multiple pore structure through the combination technology of braided tube reinforcement and TIPS method[J]. Separation and Purification Technology, 2024. DOI. 10.1016/j.seppur.2024.127335.
[11] REN Y, YU F, LI X G, et al. Recent progress on adsorption and membrane separation for organic contaminants on multi-dimensional graphene[J]. Materials Today Chemistry, 2021, DOI. 10.1016/j.mtchem.2021.100603.
[12] ZHANG T, XIAO C, ZHAO J, et al. One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption[J]. Separation and Purification Technology, 2021. DOI:/10.1016/j.seppur.2020.117576.
[13] JI D, GAO Y, WANG W, et al. Green preparation of PVDF hollow fiber membranes with multiple pore structure via melt spinning method for oil/water separation[J]. Journal of Environmental Chemical Engineering, 2022. DOI: 10.1016/j.jece.2022.108337.
[14] RAJABZADEH S, MARUYAMA T, OHMUKAI Y, et al. Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separa-tion (TIPS) method[J]. Separation and Purification Technology, 2009, 66(1): 76-83.
[15] HUANG C L, LOU C W, LIU C F, et al. Polypropylene/graphene and polypropylene/carbon fiber conductive composites: mechanical, crystallization and electromagnetic properties[J]. Applied Sciences, 2015, 5(4): 1196-1210.
[16] MATSUYAMA H, YUASA M, KITAMURA Y, et al. Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation[J]. Journal of Membrane Science, 2000, 179(1): 91-100.
[17] ZHU X, YAN D, FANG Y. In Situ FTIR Spectroscopic Study of the conformational change of isotactic polypropylene during the crystallization process[J]. The Journal of Physical Chemistry B, 2001, 105(50): 12461-12463.
[18] SUN F, LI T T, ZHANG X, et al. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020. DOI:10.1016/j.chemosphere.2020.126873.
[19] LI J, DING H, ZHANG H, et al. Superhydrophobic methylated silica sol for effective oil-water sepa-ration[J]. Materials, 2020. DOI:10.3390/ma13040842.
[20] ZHANG J, WANG L, ZHANG C, et al. MnO-mineralized oxidized-polypropylene membranes for highly efficient oil/water separationx[J]. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2021.119343.
[21] LI Z, DENG L, KINLOCH I A, et al. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres[J]. Progress in Materials Science, 2023. DOI: 10.1016/j.pmatsci.2023.101089.
[22] HAVENER R W, ZHUANG H, BROWN L, et al. Angle-resolved raman imaging of interlayer rotations and interactions in twisted bilayer graphene[J]. Nano Letters, 2012, 12(6): 3162-3167.
doi: 10.1021/nl301137k pmid: 22612855
[23] MATSUYAMA H, MAKI T, TERAMOTO M, et al. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation[J]. Journal of Membrane Science, 2002, 204(1): 323-328.
[24] WANG F, ZHAO Y, WANG X, et al. Preparation and evaluation of iPP/GO microfiltration membrane with enhanced antifouling property[J]. Chemical Research in Chinese Universities, 2018, 34(5): 833-838.
[25] ZHOU B, TANG Y, LI Q, et al. Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.42490.
[26] KIM E, KIM D, KWAK K, et al. Wettability of graphene, water contact angle, and interfacial water structure[J]. Chem, 2022, 8(5): 1187-1200.
[27] LI N, XIAO C, AN S, et al. Preparation and properties of PVDF/PVA hollow fiber membranes[J]. Desalination, 2010, 250(2): 530-537.
[1] 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160.
[2] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[3] 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68.
[4] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[5] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[6] 李韩, 王海霞, 张旭, 刘丽萍, 刘小琨. 基于聚乙烯醇缩丁醛/聚乙二醇的同轴纳米纤维膜储热织物制备及其热管理性能[J]. 纺织学报, 2024, 45(11): 37-45.
[7] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[8] 宇平, 王海跃, 汪毅, 孙钦超, 王彦, 胡祖明. 聚酯织物的直接氟修饰疏水改性及其作用机制[J]. 纺织学报, 2024, 45(10): 137-144.
[9] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[10] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[11] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[12] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[13] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[14] 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141.
[15] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!