纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 187-196.doi: 10.13475/j.fzxb.20240705201

• 服装工程 • 上一篇    下一篇

防弹衣间隙量与防护效果的有限元分析

荆建伟1, 胡裕鹏1, 马王菲1, 袁子舜1,2,3(), 顾冰菲1,2,3, 徐望4   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江理工大学 浙江省服装工程技术研究中心,浙江 杭州310018
    3.浙江理工大学 丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    4.北卡罗莱纳州立大学 威尔逊纺织学院, 北卡罗莱纳州 罗利 27695
  • 收稿日期:2024-07-22 修回日期:2024-11-18 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 袁子舜(1986—),男,副教授,博士。主要研究方向为织物冲击动力学有限元分析。E-mail:jacksparrowyzs1900@zstu.edu.cn
  • 作者简介:荆建伟(1999—),男,硕士生。主要研究方向为织物冲击动力学有限元分析。

Finite element analysis on influence of air gap on ballistic performance of body armor

JING Jianwei1, HU Yupeng1, MA Wangfei1, YUAN Zishun1,2,3(), GU Bingfei1,2,3, XU Wang4   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Apparel Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, USA
  • Received:2024-07-22 Revised:2024-11-18 Published:2025-04-15 Online:2025-06-11

摘要: 为研究防弹衣间隙量对防护性能的影响,建立了不同尺码防弹衣的冲击有限元模型,分析了不同间隙量对防弹衣能量吸收和人体形变的作用机制;通过虚拟试衣和逆向工程软件建立防弹衣几何模型,调整胸围和腰围参数,构建4款不同尺码的防弹衣有限元模型,在胸部和腰部进行冲击模拟。结果表明:胸部冲击处当间隙量从0 mm增加到2.3 mm时,人体形变宽度和深度减少了1.27倍和1.25倍,防弹衣吸收应变能最大值提高1.51倍,人体受冲击响应时间延长6 μs;腰部冲击处间隙量从0 mm增加到7.1 mm时,人体形变宽度和深度减少了2.06倍和3.14倍,防弹衣应变能吸收最大值提高2.69倍,人体响应时间延长29 μs;适当增加间隙量能够显著提升防弹衣的防护性能。

关键词: 间隙量, 防护性能, 虚拟试衣, 应变能, 有限元分析, 防弹衣

Abstract:

Objective Although body armor can block bullet penetration, the wearer can still suffer severe blunt trauma (BATA). There are gaps between the human body and the body armor, which may significantly affect the protective performance of the body armor and reduce the injury to the wearer. This study aims to investigate the impact of gap size on the protective performance of body armor using finite element analysis. This research is crucial for optimizing body armor design, enhancing wearer safety, and providing insights for future developments in protective clothing.

Method This study obtained human upper torso data through 3-D human body scanning to construct a geometric model of the human chest, ribcage, and external soft tissues. Virtual fitting software was used to accurately design body armor, build multi-layer body armor models of different sizes, perform accuracy analysis on the model, and verify the model's accuracy. Finite element analysis was performed using Abaqus/Explicit software. The mesh density at the impact location was adjusted, and impact simulation was performed according to the NIJ 0101.06 standard.

Results Finite element simulations showed significant differences in protective performance of body armor with different gap sizes. From the perspective of human body deformation, with the chest gap increased from 0 mm to 2.3 mm, the width and depth of human body deformation was decreasd by 1.27 times and 1.25 times, respectively, significantly reducing human body deformation. This change was more evident at the waist. Specifically, when the gap at the waist impact increased from 0 mm to 7.1 mm, the width and depth of the human body deformation were decreased by 2.06 times and 3.14 times, respectively. The human body deformation results show that increasing the gap size reduced the degree of human body deformation and the risk of blunt injury. The energy absorption capacity of the body armor and the human body's impact response time showd that when the gap at the chest impact area increases from 0 mm to 2.3 mm, the maximum strain energy absorbed by the body armor was increased by 1.51 times, the human body's impact response time was extended by 6 μs, and the kinetic energy of the bullet at the moment of contact was reduced by 24.3%. When the gap at the waist impact point increased from 0 mm to 7.1 mm, the maximum strain energy absorption of the body armor was increased by 2.69 times, the human body's response time was extended by 29 μs, and the bullet's kinetic energy at the moment of contact was reduced by 78.4%. These results indicate that increasing the gap size could significantly improve the protective performance of body armor and reduce the risk of human injury.

Conclusion The research results show that the air gap between the human body and the body armor provides additional buffer space, allowing the body armor to have more space and time to absorb energy when faced with bullet impact. The bulletproof material can absorb and disperse the impact force more effectively, greatly improving the protective effect of the body armor and reducing the kinetic energy transferred to the human body, thereby reducing the risk of blunt injury. Therefore, the larger the gap, the higher the strain energy absorbed by the body armor, the longer the peak occurs, and the smaller the damage to the human body. It is recommended to consider adding appropriate gaps in the design of body armor to improve practical protection effects. This study also provides a better perspective and scientific basis for designing other protective equipment. Further studies could explore varied materials and real-world testing to validate simulation results and refine protective clothing design.

Key words: air gap, protective performance, virtual fitting, strain energy, finite element analysis, body armor

中图分类号: 

  • TS941.2

图1

人体-防弹衣冲击模型建模过程"

图2

平面Twaron®织物有限元冲击模型"

表1

有限元模型参数"

材料 密度/
(kg·m-3)
E11/
GPa
E22/
GPa
E33/
GPa
E/GPa ν12 ν13 ν23 ν G12/
GPa
G13/
GPa
G23/
GPa
屈服应
力/GPa
断裂应
变/%
Twaron®
织物
7.500×102 35.000 35.000 2.000 0.010 0.010 0.010 0.050 0.100 0.100 1.350 1.000×10-4
子弹 7.800×103 2.068×102 0.300 刚体 刚体
黏土 1.539×103 6.580×10-3 0.496 6.000×10-5

表2

模拟与实验中不同层数Twaron®织物的能量吸收"

Twaron®织物的
层数
实验中Twaron®织物
吸收的能量/J
有限元模拟中Twaron®
织物吸收的能量/J
1 7.14 8.34
3 20.16 21.28
6 38.18 38.01
9 45.82 49.53

图3

人体模型"

表3

人体胸部材料参数"

C10/GPa C01/GPa 密度/(kg·m-3)
3.00×10-7 3.10×10-7 1.00×103

图4

软质防弹衣和样板"

图5

通过虚拟试衣建立的模型"

图6

扫描模型与虚拟试衣模型的偏差分析"

图7

虚拟试衣模型与有限元模型的偏差分析"

图8

间隙量的测量方法"

表4

防弹衣模型尺寸"

编号 胸围 腰围
人台 840 635
模型1 840 635
模型2 855 645
模型3 860 650
模型4 865 655

图9

各个冲击模型中不同部位的间隙量分布情况"

图10

24层防弹衣应变能随时间变化曲线"

图11

人体应变能随时间变化曲线"

图12

子弹动能随时间变化曲线"

[1] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine[J]. International Journal of Impact Engineering, 2020. DOI: 10.1016/j.ijimpeng.2019.103417.
[2] CRONIN D S, BUSTAMANTE M C, BARKER J, et al. Assessment of thorax finite element model response for behind armor blunt trauma impact loading using an epidemiological database[J]. Journal of Biomechanical Engineering, 2021.DOI: 10.1115/1.4048644.
[3] 陈洁如, 邱诗苑, 杨青青, 等. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(1):67-72.
CHEN Jieru, QIU Shiyuan, YANG Qingqing, et al. Research on inter-yarn friction of aramid fabric based on adjustable tension device[J]. Journal of Textile Research, 2021, 42(1):67-72.
[4] WANG X, ZHANG J, BAO L, et al. Enhancement of the ballistic performance of aramid fabric with polyurethane and shear thickening fluid[J]. Materials & Design, 2020. DOI:10.1016/j.matdes.2020.109015.
[5] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composites Part B: Engineering, 2020. DOI:10.1016/j.compositesb.2019.107721.
[6] TANG F, DONG C, YANG Z, et al. Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact[J]. Composites Science and Technology, 2022.DOI:10.1016/j.compscitech.2021.109190.
[7] CHOUDHURY S, YERRANALLI C S, GUHA A., et al. Prediction and mitigation of behind armor blunt trauma in composite plate armor using rubber backing or air gaps[J]. European Journal of Mechanics - A/Solids, 2022. DOI:10.1016/j.euromechsol.2022.104533.
[8] 余玉坤, 孙玥, 侯珏, 等. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(4): 124-132.
YU Yukun, SUN Yue, HOU Jue, et al. Construction and simulation of dynamic finite element model of single-layer clothing gap[J]. Journal of Textile Research, 2022, 43(4): 124-132.
[9] TILSLEY L, CARR D J, LANKESTER C, et al. Do air-gaps behind soft body armour affect protec-tion?[J]. Journal of the Royal Army Medical Corps, 2018, 164(1): 15-18.
[10] COLTMAN CELESTE E, BRISBINE BROOKE R, MOLLOW RICHARD H, et al. Identifying problems that female soldiers experience with current-issue body armour[J]. Applied Ergonomics, 2021. DOI:10.1016/j.apergo.2021.103384.
[11] SHEN W, NIU Y, BYKANOVA L, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets[J]. Journal of Biomechanical Engineering, 2010.DOI:10.1115/1.4002699.
[12] 马王菲, 胡裕鹏, 袁子舜, 等. 层后空间对防弹织物防护性能的影响[J]. 纺织高校基础科学学报, 2023, 36(5):1-8.
MA Wangfei, HU Yupeng, YUAN Zishun, et al. Influence of the space behind the layer on the protective performance of bulletproof fabrics[J]. Journal of Basic Science of Textile Universities, 2023, 36(5):1-8.
[13] COLTMAN C E, BRISBINE B R, STEELE J R. Bra-body armour integration, breast discomfort and breast injury associated with wearing body armour[J]. Ergonomics, 2021, 64(12): 1623-1633.
[14] YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017, 164: 1-9.
[15] YANG Y, CHEN X. Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact[J]. Textile Research Journal, 2017, 87(20): 2475-2486.
[16] SUN Y, CHEN L, YICK K, et al. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 615-625.
doi: S1751-6161(18)30500-9 pmid: 30500699
[17] 胡裕鹏, 孙玥, 顾冰菲, 等. 人体穿着防弹服的有限元模型构建与仿真[J]. 纺织高校基础科学学报, 2023, 36(2):64-70.
HU Yupeng, SUN Yue, GU Bingfei, et al. Finite element model construction and simulation of human body wearing bulletproof clothing[J]. Journal of Basic Science of Textile Universities, 2023, 36(2):64-70.
[18] SAMANI A, PLEWES D. A method to measure the hyperelastic parameters of ex vivo breast tissue samples[J]. Physics in Medicine and Biology, 2004, 49(18): 4395-4405.
[19] LI Z, XIANG H Y, LI Z Q, et al. The research of reverse engineering based on geomagic studio[J]. Applied Mechanics and Materials, 2013, 365: 133-136.
[20] HUANG S, HUANG L. CLO3D-based 3D virtual fitting technology of down jacket and simulation research on dynamic effect of cloth[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-11.
[21] SUN Y, YICK K, CAI Y, et al. Finite element analysis on contact pressure and 3D Breast deformation for application in women's bras[J]. Fibers and Polymers, 2021, 22(10): 2910-2921.
[22] 徐继红. 服装廓体松量与面料力学性能相关性及其预测模型的研究[D]. 上海: 东华大学,2008:13-16.
XU Jihong. Research on the correlation between garment silhouette looseness and fabric mechanical properties and its prediction model[D]. Shanghai: Donghua University, 2008:13-16.
[23] LI Jun, ZHANG Zhaohua. The relationship between air gap sizes and clothing heat transfer performance[J]. Journal of The Textile Institute, 2013, 104(12): 1327-1336.
[24] 何琴. 人体着装胸腰截面间隙量分布特征及其影响因素分析[D]. 杭州: 浙江理工大学,2019:15-18.
HE Qin. Analysis of distribution characteristics and influencing factors of gaps in thoracolumbar section of human body clothing[D]. Hangzhou: Zhejiang Science and Technology University, 2019: 15-18.
[25] YANG Y. Study on ballistic performance of hybrid soft body armour[D]. Manchester: University of Manchester, 2016:27-31.
[26] UGURAL A C, FENSTER S K. Advanced strength and applied elasticity[M]. 4th ed. New Jersey: New Jersey Institute of Technology, 2003:71-93.
[1] 钱江瑞, 刘文武, 李俊, 方以群, 徐佳骏. 防爆服装冲击防护性能测评技术研究进展[J]. 纺织学报, 2025, 46(01): 238-247.
[2] 吕汉明, 梁金辉, 马崇启, 端木德庆. 热风黏合烘箱有限元仿真分析与结构优化[J]. 纺织学报, 2024, 45(10): 216-223.
[3] 侯珏, 丁焕, 杨阳, 陆寅雯, 余灵婕, 刘正. 基于混合知识蒸馏和特征增强技术的轻量级无解析式虚拟试衣网络[J]. 纺织学报, 2024, 45(09): 164-174.
[4] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[5] 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172.
[6] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[7] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[8] 袁甜甜, 王鑫, 罗炜豪, 梅琛楠, 韦京艳, 钟跃崎. 基于注意力机制和视觉转换器的三维虚拟试衣网络[J]. 纺织学报, 2023, 44(07): 192-198.
[9] 叶勤文, 王朝晖, 黄荣, 刘欢欢, 万思邦. 虚拟服装迁移在个性化服装定制中的应用[J]. 纺织学报, 2023, 44(06): 183-190.
[10] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[11] 鲁虹, 宋佳怡, 李圆圆, 滕峻峰. 基于合体两片袖的内旋造型结构设计[J]. 纺织学报, 2022, 43(08): 140-146.
[12] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(07): 207-216.
[13] 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202.
[14] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[15] 王春茹, 袁月, 曹晓梦, 范依琳, 钟安华. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(03): 153-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!