纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 120-127.doi: 10.13475/j.fzxb.20241102101
郑小虎1,2,3(
), 杜思淇4, 刘永青5, 王健5, 陈峰5
ZHENG Xiaohu1,2,3(
), DU Siqi4, LIU Yongqing5, WANG Jian5, CHEN Feng5
摘要: 棉纱线生产工序复杂、变量多,过程数据多样高维,进而难以准确选择影响纱线质量的关键因素,导致棉纱线质量的预测难度大、精度低。为解决上述问题,提出使用基于copula熵的特征选择方法,以copula熵作为选择依据,量化变量与目标之间的关系,并选取关联度最大的7个关键特征作为后续预测模型的输入,达到模型轻量化的目的。结合一维卷积神经网络(1D-CNN)和K-近邻算法(KNN)对4种纱线质量指标进行预测,即条干均匀度变异系数CVm、毛羽H值、细节(-50%)和粗节(+50%),其中1D-CNN从输入变量中提取深层特征信息,而KNN用于执行纱线质量指标的拟合。并以纺织厂真实的环锭纺纱线生产数据为例,对提出的方法进行检验。结果显示:与1D-CNN、KNN、支持向量回归机、LightGBM、Transformer模型相比,所提模型对纱线质量的预测精度更高,且预测时间平均提高36.5%,提升了纱线质量预测速度。
中图分类号:
| [1] | KRUPINCOVA G. Yarn hairiness versus quality of cotton fibres[J]. Indian Journal of Fibre & Textile Research, 2013, 38(3):223-229. |
| [2] | 谷有众, 高卫东, 卢雨正, 等. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(7):142-148. |
| GU Youzhong, GAO Weidong, LU Yuzheng, et al. Prediction of vortex yarn properties based on hybrid genetic algorithm and support vector regression[J]. Journal of Textile Research, 2016, 37(7):142-148. | |
| [3] |
HU Z, ZHAO Q, WANG J. The prediction model of worsted yarn quality based on CNN-GRNN neural network[J]. Neural Computing and Applications, 2019, 31(9):4551-4562.
doi: 10.1007/s00521-018-3723-7 |
| [4] |
WANG M, WANG J, GAO W, et al. One-dimensional convolutional neural network with data characterization measurement for cotton yarn quality prediction[J]. Cellulose, 2023, 30(6):4025-4039.
doi: 10.1007/s10570-023-05108-9 |
| [5] | 刘智玉, 李学星, 李立轻, 等. 小样本纱线质量预测的机器学习算法适用性分析[J]. 棉纺织技术, 2024, 52(8):27-34. |
| LIU Zhiyu, LI Xuexing, LI Liqing, et al. Applicability analyses of machine learning algorithm for yarn quality prediction under small samples conditions[J]. Cotton Textile Technology, 2024, 52(8):27-34. | |
| [6] | 章军辉, 陈明亮, 郭晓满, 等. 基于粒子群优化支持向量机的纱线质量预测[J]. 棉纺织技术, 2024, 52(4):16-22. |
| ZHANG Junhui, CHEN Mingliang, GUO Xiaoman, et al. Yarn quality prediction based on support vector machine optimized by particle swarm optimization[J]. Cotton Textile Technology, 2024, 52(4):16-22. | |
| [7] |
LIU Z, CHEN N, WANG J. A two-layer stacking regression model for predicting yarn quality of small samples[J]. Textile Research Journal, 2024, 94(9-10):1096-1110.
doi: 10.1177/00405175241227633 |
| [8] |
SUN Y N, QIN W, XU H W, et al. A multiphase information fusion strategy for data-driven quality prediction of industrial batch processes[J]. Information Sciences, 2022, 608:81-95.
doi: 10.1016/j.ins.2022.06.057 |
| [9] |
SUN Y, QIN W, ZHUANG Z. Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems[J]. Journal of Intelligent Manufacturing, 2021, 33(6):1-15.
doi: 10.1007/s10845-020-01641-7 |
| [10] |
ZHAO N, LIN T W. A copula entropy approach to correlation measurement at the country level[J]. Applied Mathematics and Computation, 2011, 218(2):628-642.
doi: 10.1016/j.amc.2011.05.115 |
| [11] |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14):304-312.
doi: 10.3901/JME.2021.14.304 |
|
CHE Changchang, WANG Huawei, NI Xiaomei, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312.
doi: 10.3901/JME.2021.14.304 |
|
| [12] | FAN D, HE H, WANG R, et al. CHLNET: a novel hybrid 1D CNN-SVR algorithm for estimating ocean surface chlorophyll-a[J]. Frontiers in Marine Science, 2022.DOI:10.3389/fmars.2022.934536. |
| [13] | 孙长敏, 戴宁, 沈春娅, 等. 基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术[J]. 纺织学报, 2024, 45(7):72-77. |
| SUN Changmin, DAI Ning, SHEN Chunya, et al. Fabric quality prediction technology based on K-nearest neighbor algorithm improved particle swarm optimization-back propagation algorithm[J]. Journal of Textile Research, 2024, 45(7): 72-77. |
| [1] | 孙长敏, 戴宁, 沈春娅, 徐开心, 陈炜, 胡旭东, 袁嫣红, 陈祖红. 基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术[J]. 纺织学报, 2024, 45(07): 72-77. |
|
||