纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 173-182.doi: 10.13475/j.fzxb.20250201801

• 染整工程 • 上一篇    下一篇

退浆废水预氧化-絮凝一体化处理及资源化技术

沈忱思, 王欣悦, 李方()   

  1. 东华大学 环境科学与工程学院, 上海 201620
  • 收稿日期:2025-02-12 修回日期:2025-05-03 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 李方(1979—),男,教授,博士。主要研究方向为水污染控制。E-mail:lifang@dhu.edu.cn
  • 作者简介:沈忱思(1985—),女,副教授,博士。主要研究方向为水污染控制化学。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J202407);上海市自然科学基金项目(21ZR1401500);中央高校基本科研业务费专项基金资助项目(2232022G-11);中央高校基本科研业务费专项基金资助项目(2232023G-11)

Integrated treatment and resource recovery technology of desizing wastewater through pre-oxidation and flocculation

SHEN Chensi, WANG Xinyue, LI Fang()   

  1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2025-02-12 Revised:2025-05-03 Published:2025-08-15 Online:2025-08-15

摘要: 聚乙烯醇(PVA)的高聚合度、电中性和强分子内/间氢键,导致其难降解也难脱稳沉淀。为此,提出一种基于Fe2+/CaO2体系的一体化“预氧化-絮凝沉淀”处理技术,利用CaO2水解释放H2O2,在Fe2+催化下生成氧化活性物种,强化PVA的可絮凝性并通过生成的Fe3+和Ca2+实现高效絮凝沉淀。通过药剂Fe与Ca的量比、反应pH值及处理时间等关键影响因素的调控,结合X射线光电子能谱、扫描电子显微镜等表征技术手段,对Fe2+/CaO2体系处理含PVA退浆废水的效能、机制以及污泥资源化潜力进行研究。结果表明:Fe2+投加量为20 mmol/L、CaO2投加量为2 mmol/L时,对于PVA质量浓度为0.5 ~ 2 g/L的退浆废水,其PVA和COD去除率分别可达97.1%和92.2%以上,且对含有改性淀粉等其它高聚物的实际退浆废水COD去除率也可达90%以上;处理过程中产生的污泥富含铁有机络合物及铁氧体,具有良好的吸附和催化性能,投加氧化剂30 min内对10 mg/L活性黑5模拟废水的去除率可达94.29%。

关键词: 退浆废水, 聚乙烯醇, Fe2+/CaO2体系, 废水一体化处理, 预氧化, 絮凝沉淀, 污泥资源化

Abstract:

Objective In China, over 20% of polyvinyl alcohol (PVA) is utilized as a sizing reagent in the textile industry, with virtually all of it being discharged into wastewater during the desizing process in fabric printing and dyeing. Traditional PVA wastewater treatment methods face significant challenges due to PVA's high degree of polymerization, electrical neutrality, and strong intramolecular/intermolecular hydrogen bonds, which collectively impede degradation and precipitation. These characteristics typically necessitate substantial chemical inputs and complex treatment processes. Therefore, developing an integrated technology that combines pre-oxidation and flocculation processes is particularly crucial for efficient PVA wastewater treatment.

Method A "pre-oxidation flocculation precipitation" technology based on Fe2+/CaO2 was developed. The system releases H2O2 through CaO2 hydrolysis, generates oxidative species under Fe2+ catalysis, enhances PVA flocculability, and achieves precipitation via Fe3+ and Ca2+ ions. Effects of reagent dosage, pH value, initial PVA concentration, and reaction time were investigated. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to analyze precipitates for mechanism elucidation. The sludge was evaluated as an adsorbent and catalyst for Reactive Black 5 degradation.

Results The integrated treatment of PVA technology has been successfully achieved. The optimal conditions were determined to be 20 mmol/L Fe2+ and 2 mmol/L CaO2, with a pH value of 3 for the pre-oxidation stage, pH value of 10 for the flocculation for sedimentation stage, and a pre-oxidation time of 60 minutes. When treating PVA within a concentration range of 0.5-2 g/L, the removal rates for PVA and chemical oxygen demand (COD) reached over 97.1% and 92.2%. The process also demonstrated effective treatment of actual desizing wastewater containing modified starch, achieving over 90% removal efficiency. XPS C1s spectra showed an increase in C—O bond proportion after treatment, with O—C═O bonds shifting to higher binding energy (289.3 eV) and the emergence of a new ketone (C═O) peak at 288.1 eV, indicating PVA chain breakage and oxidation to form oxygen-containing groups that improved flocculation. SEM revealed that precipitates consisted of irregularly stacked nanoparticles with compact structures, while EDS mapping showed Fe and Ca atomic percentages of 24.65% and 75.35%, respectively. TEM images displayed typical amorphous flocculent structures with localized lattice fringes, confirming the formation of CaFe5O5 ferrite complexes. Additionally, the integrated treatment technology produces sludge containing a significant amount of iron/calcium organic complexes and ferrites. This sludge can be repurposed for the treatment of difficult-to-degrade pollutants in wastewater. Specifically, when 0.10 g of sludge was added to 100 mL of wastewater containing 10 mg/L of Reactive Black 5, a removal rate exceeding 94.3% was achieved after 30 min.

Conclusion This study developed an Fe2+/CaO2 system for treating PVA-containing desizing wastewater and investigated the resource utilization of generated sludge. The system functions by producing H2O2 through CaO2 hydrolysis, generating oxidative species under Fe2+ catalysis, while Fe3+ and Ca2+ ions act as flocculants. Optimal conditions (20 mmol/L Fe2+, 2 mmol/L CaO2, pH value 3 for pre-oxidation, pH value 10 for flocculation, 60 min reaction time) achieved removal efficiencies exceeding 97.1% for PVA and 92.2% for COD in 0.5-2 g/L PVA concentrations. The resulting sludge, rich in iron/calcium-organic complexes and ferrites (CaFe5O7), demonstrated exceptional value for treating recalcitrant pollutants, achieving 94.29% removal of Reactive Black 5 within 30 min.

Key words: desizing wastewater, polyvinyl alcohol, Fe2+/CaO2 system, integrated wastewater treatment, pre-oxidation, flocculation precipitation, sludge utilization

中图分类号: 

  • X703.1

图1

Fe2+与CaO2不同投加比例下PVA废水的处理效果"

图2

预氧化阶段和絮凝沉淀阶段pH值、PVA初始质量浓度、预氧化时间对PVA废水的处理效果的影响"

图3

原始PVA及其氧化沉淀产物的表征"

图4

沉淀物的SEM照片、SEM-EDS元素分布和TEM照片"

图5

沉淀污泥的资源化利用效果"

图6

PVA废水的Zeta电位与粒径大小的变化"

图7

PVA“预氧化-絮凝沉淀”一体化处理及资源化利用机制"

图8

实际退浆废水的处理效果及沉淀污泥用于染料降解的效果"

[1] WANG D B, ZHENG Y Y, DENG Q, et al. Water-soluble synthetic polymers: Their environmental emission relevant usage, transport and transformation, persistence, and toxicity[J]. Environmental Science & Technology, 2023, 57(16): 6387-6402.
[2] WANG Z, SAADÉ N K, ARIYA P A. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: Fresh falling urban snow[J]. Environmental Pollution, 2021. DOI:10.1016/j.envpol.2021.116698.
[3] JULINOVÁ M, VANHAROVA L, JURCA M. Water-soluble polymeric xenobiotics-polyvinyl alcohol and polyvinyl pyrrolidon-and potential solutions to environmental issues: a brief review[J]. Journal of Environmental Management, 2018, 228: 213-222.
[4] CHEN L H, REDDY N, YANG Y Q. Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten[J]. Environmental Science & Technology, 2013, 47(9): 4505-4511.
[5] ANDREANI T, NOGUEIRA V, PINTO V V, et al. Influence of the stabilizers on the toxicity of metallic nanomaterials in aquatic organisms and human cell lines[J]. Science of the Total Environment, 2017, 607: 1264-1277.
[6] HUPPERTSBERG S, ZAHN D, PAUELSEN F, et al. Making waves: water-soluble polymers in the aquatic environment: an overlooked class of synthetic poly-mers?[J]. Water Research, 2020. DOI:10.1016/j.watres.2020.115931.
[7] WEI Y H, FU J, WU J Y, et al. Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol (PVA)-degrading enzymes from the novel PVA degrader stenotrophomonas rhizophila QL-P 4 [J]. Applied and Environmental Microbiology, 2018. DOI:10.1128/AEM.01898-17.
[8] 潘玉婷, 李方, 沈忱思, 等. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
PAN Yuting, LI Fang, SHEN Chensi, et al. Two-stage membrane concentration of poly(vinyl alcohol) in desizing wastewater by membrane distillation and ultrafiltration[J]. Journal of Textile Research, 2018, 39(11): 96-102.
[9] 沈忱思, 王曼, 徐晨烨, 等. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
doi: 10.13475/j.fzxb.20201204207
SHEN Chensi, WANG Man, XU Chenye, et al. Radical-induced crosslinking of poly(vinyl alcohol) from desizing wastewater[J]. Journal of Textile Research, 2021, 42(11): 117-123.
doi: 10.13475/j.fzxb.20201204207
[10] SONG Q, CHEN X G, TANG L J, et al. Treatment of polyvinyl alcohol containing wastewater in two stage spiral symmetrical stream anaerobic bioreactors coupled a sequencing batch reactor[J]. Bioresource Technology, 2021. DOI:10.1016/j.biortech.2021.125702.
[11] LI F, MA H J, SHEN C S, et al. From the accelerated production of ·OH radicals to the crosslinking of polyvinyl alcohol: the role of free radicals initiated by persulfates[J]. Applied Catalysis B: Environmental, 2021. DOI:10.1016/j.apcatb.2020.119763.
[12] PAN Y T, LIU Y B, WU D L, et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2019.121866.
[13] 庞悦, 楼洪海, 郜睿, 等. 芬顿氧化深度处理实际印染废水研究[J]. 水处理技术, 2023, 49(5): 40-44.
doi: 10.16796/j.cnki.1000-3770.2023.05.008
PANG Yue, LOU Honghai, GAO Rui, et al. Study on advanced treatment of dyeing wastewater by Fenton oxidation[J]. Technology of Water Treatment, 2023, 49(5): 40-44.
doi: 10.16796/j.cnki.1000-3770.2023.05.008
[14] CHEN M Q, CHEN Z H, WU P X, et al. Simultaneous oxidation and removal of arsenite by Fe(III)/CaO2 Fenton-like technology [J]. Water Research, 2021. DOI:10.1016/j.watres.2021.117312.
[15] XUE Y, LU S, FU X, et al. Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: enhanced degradation by chelating agents[J]. Chemical Engineering Journal, 2018, 331: 255-264.
[16] XUE Y F, SUI Q, BRUSSEAU M L, et al. Insight into CaO2-based Fenton and Fenton-like systems: strategy for CaO2-based oxidation of organic contaminants[J]. Chemical Engineering Journal, 2019, 361: 919-928.
[17] PAN Y, SU H, ZHU Y, et al. CaO2based Fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals[J]. Water Research, 2018, 145: 731-740.
[18] ZHANG X, GU X, LU S, et al. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion[J]. Journal of Hazardous Materials, 2015, 284: 253-260.
doi: 10.1016/j.jhazmat.2014.11.030 pmid: 25463240
[19] 顾润南, 林苗. 退浆废水中聚乙烯醇(PVA)含量的测定[J]. 东华大学学报(自然科学版), 2005, 31(2): 106-109.
GU Runnan, LIN Miao. Determination of PVA content in desizing wastewater[J]. Journal of Donghua University (Natural Science), 2005, 31(2): 106-109.
[20] 王继鹏, 任永芳. 基于重铬酸钾快速检测法的废水中COD测定探究[J]. 化工管理, 2017 (24): 140-141.
WANG Jipeng, REN Yongfang. Determination of COD in wastewater based on potassium dichromate rapid detection method[J]. Chemical Management, 2017(24): 140-141.
[21] CHEN M, CHEN Z, WU P, et al. Simultaneous oxidation and removal of arsenite by Fe(III)/CaO2 Fenton-like technology [J]. Water Research, 2021. DOI:10.1016/j.watres.2021.117312.
[22] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84.
[23] BARB W G, BAXENDALE J H, GEORGE P, et al. Reactions of ferrous and ferric lons with hydrogen peroxide.[J]. Nature, 1949, 163(4148): 692-694.
[24] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
[25] SAWYER D T, VALENTINE J S. How super is superoxide?[J]. Accounts of Chemical Research, 1981, 14(12): 393-400.
[26] DE LAAT J, GALLARD H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling[J]. Environmental Science & Technology, 1999, 33(16): 2726-2732.
[27] NARDELLO V. Identification of the precursor of singlet oxygen (1O2, 1Δg) involved in the disproportionation of hydrogen peroxide catalyzed by calcium hydroxide[J]. Chemical Communications, 1998(5): 599-600.
[28] 刘静, 王杰, 孙金诚, 等. Fenton及改进Fenton氧化处理难降解有机废水的研究进展[J]. 水处理技术, 2015, 41(2): 6-10.
LIU Jing, WANG Jie, SUN Jincheng, et al. Research advances in Fonton and improvements of the Fenton oxidation process for organic wastewater treatment[J]. Technology of Water Treatment, 2015, 41(2): 6-10.
[29] STOYANOV P, AKHTER S, WHITE J M. XPS study of metal/polymer interaction: Evaporated aluminum on polyvinyl alcohol polymer[J]. Surface and Interface Analysis, 1990, 15(9): 509-515.
[30] STEVIE F A, DONLEY C L. Introduction to X-ray photoelectron spectroscopy[J]. Journal of Vacuum Science & Technology A, 2020. DOI:10.1116/6.0000412.
[31] 平郑骅, 叶匀分, 丁雅娣, 等. 傅里叶红外光谱法研究高分子共混物的相容性[J]. 复旦学报(自然科学版), 1997, 36(4): 439-444.
PING Zhenghua, YE Yunfen, DING Yadi, et al. Investigation of polymer blends compatibility by FTIR[J]. Journal of Fudan University (Natural Science), 1997, 36(4): 439-444.
[32] 黄显南, 杨崎峰, 骆莲新, 等. 膨化处理胶粘物的红外光谱分析[J]. 中国造纸学报, 2005, 20(2): 106-108.
HUANG Xiannan, YANG Qifeng, LUO Lianxin, et al. The IR spectrum analysis of stickies treated by explo-sion[J]. Transactions of China Pulp and Paper, 2005, 20(2): 106-108.
[33] 兰明. 含PVA的退浆废水处理工艺研究[D]. 广州: 华南理工大学, 2016: 5.
LAN Ming. Study on treatment technology of desizing wastewater containing PVA[D]. Guangzhou: South China University of Technology, 2016: 5.
[34] SUDHAMANI S R, PRASAD M S, UDAYA SANKAR K. DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films[J]. Food Hydrocolloids, 2003, 17(3): 245-250.
[35] FLEMING I, WILLIAMS D. Infrared and raman spec-tra[M]. Cham: Springer International Publishing, 2019: 85-121.
[1] 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17.
[2] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[3] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[4] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[5] 王文, 张乐乐, 黄阳杰, 谭浩, 方舒婷, 向晨雪, 王栋. 聚乙烯醇-乙烯/SiO2复合柔性驱动膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 10-17.
[6] 杨美慧, 李博, 沈艳琴, 武海良. 再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能[J]. 纺织学报, 2024, 45(02): 142-152.
[7] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[8] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[9] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[10] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[11] 王双华, 王冬, 付少海, 仲鸿天, 董朋. 海岛纤维用增塑改性聚乙烯醇的制备及其性能[J]. 纺织学报, 2023, 44(04): 8-15.
[12] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[13] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[14] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[15] 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!