纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 176-186.doi: 10.13475/j.fzxb.20250400201

• 服装工程 • 上一篇    下一篇

基于乳房形态特征的文胸模杯匹位参数优化

刘玉婉1, 钟泽君1, 孙玥1,2,3, 顾冰菲1,4,5()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.服装数字化技术浙江省工程实验室, 浙江 杭州 310018
    4.浙江理工大学 数智风格与创意设计研究中心, 浙江 杭州 310018
    5.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
  • 收稿日期:2025-04-02 修回日期:2025-07-03 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 顾冰菲(1987—),女,教授,博士。主要研究方向为数字化服装技术。E-mail:gubf@zstu.edu.cn
  • 作者简介:刘玉婉(2001—),女,硕士生。主要研究方向为数字化服装技术。
  • 基金资助:
    国家自然科学基金项目(61702461);中国纺织工业联合会应用基础研究项目(J202007);浙江省哲学社会科学规划艺术学课题资助项目(24NDJC171YB);浙江理工大学科研业务费专项资金资助项目(24076114Y)

Optimization of bra cup parameters based on breast morphological characteristics

LIU Yuwan1, ZHONG Zejun1, SUN Yue1,2,3, GU Bingfei1,4,5()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Apparel Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology, Hangzhou, Zhejiang 310018, China
    4. Digital Intelligence Style and Creative Design Research Center, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    5. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2025-04-02 Revised:2025-07-03 Published:2025-10-15 Online:2025-10-15

摘要: 为提高文胸的合体性和穿着舒适度,优化文胸模杯匹位参数,建立了人体与文胸模杯的有限元模型,并探究不同模杯匹位参数的文胸对乳房形态的影响。首先确定文胸模杯匹位参数的选取,通过三维人体扫描获得人体点云数据,提取人体乳房特征点与形态参数。再运用逆向工程软件对人体点云数据进行处理,得到身体躯干、乳房和软组织的几何模型。使用手持式三维扫描仪扫描文胸外表面,以薄文胸为基础模型,使用建模软件构建不同匹位参数的模杯几何模型。通过计算物体轮廓Hu矩的欧氏距离和执行独立样本T检验,比较实际扫描与虚拟模型的差异,以验证有限元模型的准确性。在此模型的基础上进一步对文胸模杯匹位参数进行优化,讨论了穿戴不同模杯匹位参数的文胸时不同乳房形态的变化与压力分布。结果表明,对于下垂且外扩的扁平圆型乳房来说,选择匹位厚度为15 mm、匹位短半轴长为20 mm、匹位长半轴长介于20~40 mm的模杯时,对乳房的塑形效果最佳,且不会对乳房产生较大压力,舒适性较优。以上方法和结果可指导文胸模杯匹位的设计,节省模杯原料从而降低生产成本。

关键词: 文胸模杯, 乳房形态, 三维人体测量, 人体点云数据, 模杯匹位参数

Abstract:

Objective As a significant factor to reflect the morphological beauty of women, the breast part can also influence women's health. The bra cup can effectively support and gather the breasts, thereby improving the breast shape. To optimize the parameters of the bra cup, this study used the real-person wearing experiment and finite element model to analyze the relationship between the human body and bra. The influence of different bra cup parameters on the breast shape was evaluated from two aspects, including the displacement of breast feature points and the change in slice area, and then the bra cup parameters were optimized.

Method The point cloud data of human body were obtained through 3-D body scanning. Breast feature points and morphological parameters were extracted to establish geometric models of the breast, torso, and bra cup. Based on a thin bra cup model, geometric models of mold-cup bras with different bra cup parameters (thickness, long semi-axis length, short semi-axis length) were constructed by modifying these parameters. Utilizing the validated model, the wearing effects of 81 combinations of bra cup parameters were simulated. Displacements of breast feature points and pressure distribution were analyzed to investigate the influence of bra cup parameters on breast morphology.

Results The accuracy of the finite element contact model was verified through contour similarity and morphological parameter deviation. The breast parts of the actual model and the virtual model were segmented, and the similarity of their contour shapes was calculated to be 0.007, indicating a high degree of similarity and small deviation. At the same time, an independent sample t-test was used to test the slice area of the actual model and the virtual model. The t-test yielded t = -0.028, p = 0.978 > 0.05, indicating no significant difference between the two. Real experiments showed that thin bras had a better effect on increasing the height of the BP point, but thick bras were more suitable for optimizing the sagging shape of the breasts and to some extent avoiding over-lifting the breast position. Moreover, thick bras had a better effect on improving the degree of BP point convergence, which is conducive to shaping a more convergent breast shape. After wearing bras, the S value of the subjects increased, indicating that wearing bras helps flat-shaped breasts become fuller. However, fuller-shaped breasts led to decreased S value after wearing bras. After wearing thick bras, the breast area in the second and third quadrants was larger than that in the first and fourth quadrants, indicating that thick bras offered a better effect on improving the degree of breast convergence. Numerical simulation showed that for flat-rounded breasts, choosing a cup with a cup thickness of 15 mm and a short semi-axis of 20 mm had the best breast shaping effect. For bra manufacturers, a cup with a long semi-axis of 20 mm could be selected to save cup fabric and reduce production costs. Contact pressure analysis showed that when the cup thickness was 17 mm, the maximum contact pressure was between 1.47 kPa and 2.46 kPa, which would cause slight discomfort to the human body. The cup thickness should be appropriately reduced.

Conclusion The proposed numerical simulation method was adopted to quantitatively evaluate the morphological changes of the breast. The support and gathering capabilities of bras under different cup parameters were compared, and the optimal cup parameters for flat-rounded breasts were obtained. This model can be used to study the complex contact mechanism between the human breast and the bra cup, thereby providing theoretical guidance for the development of bra cups from the perspectives of functionality and comfort. It has application value in optimizing the design of bra cups, shortening the product development cycle, and reducing production costs.

Key words: bra mold-cup, breast morphology, 3-D body measurement, human body point cloud data, bra cup parameter

中图分类号: 

  • TS941.17

图1

文胸匹位参数定义"

图2

实验文胸"

表1

文胸各部分材料参数"

文胸部件 弹性模量E/MPa 泊松比υ
模杯 1.00 0.30
面料(纵向) 0.14 0.24
面料(横向) 0.49 0.18

图3

乳房局部立体形态示意图 注:各分图中从左至右分别为扁平圆型、均匀椭圆型、丰满椭圆型。"

表2

特征点/线定义"

类型 符号 定义
特征点 DBBP 乳房下侧点:乳房边界最低点
DOBP 乳房外侧点:乳房边界最远离前中线的点
DIBP 乳房内侧点:乳房边界最接近前中线的点
DBP 乳点:乳头的中心点
DCP 乳沟点:到DBP点与水平方向呈45°角且距离7 cm的点
特征线 LBL 胸围线:过DBP点的水平围线
LOIL DOBP点和DIBP点的连线

图4

乳房特征点/线标定"

图5

乳房局部坐标系"

图6

右乳房分割示意图"

图7

乳房切片示意图"

图8

右乳房切片示意图"

表3

乳房形态参数具体定义"

符号 定义
H 头顶到地面的垂线距
HT O″点与切片1最大Z值坐标之间的纵向距离
HU O″点与DBBP点之间的纵向距离
HBP DBP点到地面的垂线距
W 胸宽
WOBP O″点与DOBP点之间的水平距离
WIBP O″点与DIBP点之间的水平距离
WBB 两乳点间距
RBH HBPH的比值
RBW WBBW的比值
S 切片Pij的数量
Sij 切片Pij的面积
GBL LBL的长度

表4

3种穿戴情况下参数平均值"

穿戴情况 WOBP WIBP WBB
薄文胸 8.25 6.39 16.69
厚文胸 8.22 6.05 16.26
无文胸 6.38 7.18 18.41

表5

3种穿戴情况下S11、S12、S13和S14值的变化情况"

穿戴情况 S11 S12 S13 S14
薄文胸 7.29 17.63 8.69 6.08
厚文胸 8.30 19.60 7.67 5.31
无文胸 14.59 21.32 5.40 7.11

图9

穿戴文胸前后切片象限面积变化"

图10

人体几何模型"

图11

模杯几何模型构建流程"

表6

模型材料参数表"

类型 材料模型 材料参数
乳房 Mooney-Rivlin C10=0.05 kPa
C01=0.052 kPa
C11=0.375 kPa
C20=0.78 kPa
C02=0.63 kPa
模杯 Odgen μ1=2.81 kPa,α1=1.66
μ1=-2.80 kPa,α1=1.61
μ1=0.003 1 kPa,α1=38.28

图12

实际模型与虚拟模型的轮廓形状相似度分析"

表7

实际模型与虚拟模型参数偏差分析"

类别 GBL值/cm RBH RBW
模拟 77.70 0.707 2 0.663 8
实际 79.44 0.705 8 0.632 6
差值 1.74 0.001 4 0.312 0
偏差/% 2.19 0.20 4.93

图13

实际模型与虚拟模型的切片图对比"

表8

文胸匹位参数与特征点位移的相关性"

文胸匹位
参数
DBP
Y
DBP
Z
DCP
Y
DCP
Z
匹位厚度 -0.926** -0.739** 0.513** -0.167
匹位短半轴 0.073 0.502** -0.576** 0.647**

图14

接触应力示意图"

表9

文胸匹位参数与乳房最大接触压强的相关性"

乳房压强 匹位厚度 匹位短半轴长 匹位长半轴长
最大接触压强 0.857** -0.182 0.067
[1] 李臻颖, 苏军强, 吴志明. 青年女体三维扫描数据的特征围度计算方法[J]. 纺织学报, 2017, 38(5): 110-114.
LI Zhenying, SU Junqiang, WU Zhiming. Calculating method of characteristics girth of young female body by 3-D scanning data[J]. Journal of Textile Research, 2017, 38(5): 110-114.
[2] 叶勤文, 王朝晖, 黄荣, 等. 虚拟服装迁移在个性化服装定制中的应用[J]. 纺织学报, 2023, 44(6): 183-190.
YE Qinwen, WANG Zhaohui, HUANG Rong, et al. Application of virtual garment transfer in garment customization[J]. Journal of Textile Research, 2023, 44(6): 183-190.
doi: 10.1177/004051757404400306
[3] 顾明月, 罗凯文, 刘宿慧, 等. 基于角度指标的青年女性乳房形态细分与判别[J]. 服装学报, 2023, 8(6): 495-501.
GU Mingyue, LUO Kaiwen, LIU Suhui, et al. Research on subdivision and discrimination of breast morphology in young women based on angle indicators[J]. Journal of Clothing Research, 2023, 8(6): 495-501.
[4] COLTMAN C E, STEELE J R, MCGHEE D E. Which bra components contribute to incorrect bra fit in women across a range of breast sizes?[J]. Clothing and Textiles Research Journal, 2023, 8(6): 495-501.
[5] CHEN Y, YING B, ZHANG X, et al. Characteristic parameters analysis on breast shape for moulded bra cup and bra structure design[J]. Journal of Fiber Bioengineering and Informatics, 2014, 7(3): 429-439.
doi: 10.3993/jfbi
[6] 常丽霞, 张欣, 齐静. 基于三维人体测量技术的女性乳房形态细分研究[J]. 纺织学报, 2006, 27(12): 21-24.
CHANG Lixia, ZHANG Xin, QI Jing. Research on subdividing of female breast shapes based on 3-D body measurement[J]. Journal of Textile Research, 2006, 27(12): 21-24.
[7] ZHENG R, YU W, FAN J. Development of a new Chinese bra sizing system based on breast anthropometric measurements[J]. International Journal of Industrial Ergonomics, 2007, 37(8): 697-705.
doi: 10.1016/j.ergon.2007.05.008
[8] LIU Y, WANG J, ISTOOK C L. Study of optimum parameters for Chinese female underwire bra size system by 3D virtual anthropometric measurement[J]. The Journal of The Textile Institute, 2017, 108(6): 877-882.
doi: 10.1080/00405000.2016.1195954
[9] 高月美. 60-75岁老年女性的胸部形态与文胸结构研究[D]. 武汉: 武汉纺织大学, 2020: 16-44.
GAO Yuemei. Research in breast morphology and bra structure of older women between 60 and 75 years old[D]. Wuhan: Wuhan Textile University, 2020: 16-44.
[10] PEI J, FAN J, ASHDOWN S P. Detection and comparison of breast shape variation among different three-dimensional body scan conditions: nude, with a structured bra, and with a soft bra[J]. Textile Research Journal, 2019, 89(21/22): 4595-4606.
doi: 10.1177/0040517519839398
[11] SUN Y, YICK K, CAI Y, et al. Finite element analysis on contact pressure and 3D breast deformation for application in women's bras[J]. Fibers and Polymers, 2021, 22(10): 2910-2921.
doi: 10.1007/s12221-021-0878-0
[12] 盛欣洋, 陈晓娜, 卢娅娅, 等. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(1): 161-167.
SHENG Xinyang, CHEN Xiaona, LU Yaya, et al. Quantitative relationship between fabric elasticity and shock absorption performance of sports bras[J]. Journal of Textile Research, 2024, 45(1): 161-167.
[13] 夏静. 基于3D打印技术的文胸模杯个性化定制及胸部塑形机理研究[D]. 西安: 西安工程大学, 2023: 25-32.
XIA Jing. Research on the mechanism of bra mold cup customization and chest shaping based on 3D printing technology[D]. Xi'an: Xi'an Polytechnic University, 2023: 25-32.
[14] 王悦, 任军, 马飞, 等. 基于服装个性化智能定制的三维人体测量系统物-像结构算法的研究[J]. 计算机科学, 2024, 51(S1): 1122-1126.
WANG Yue, REN Jun, MA Fei, et al. Study on object image structure algorithm of 3D human body measurement system based on personalized intelligent customization of clothing[J]. Computer Science, 2024, 51(S1): 1122-1126.
[15] 钟泽君, 张贝贝, 徐凯忆, 等. 基于特征参数的青年女性乳房形态分析[J]. 纺织学报, 2022, 43(10): 148-154.
doi: 10.13475/j.fzxb.20210907607
ZHONG Zejun, ZHANG Beibei, XU Kaiyi, et al. Research on breast shape of young females using characteristic parameters[J]. Journal of Textile Research, 2022, 43(10): 148-154.
doi: 10.13475/j.fzxb.20210907607
[16] MALBON C, KNOCK C, CRITCHLEY R, et al. The effect of underwired and sports bras on breast shape, key anthropometric dimensions, and body armour com-fort[J]. The Police Journal, 2022, 95(3): 436-458.
doi: 10.1177/0032258X211011619
[17] 孙玥, 周凌芳, 周祺旋, 等. 运动内衣承托及其动态舒适性能的有限元分析[J]. 纺织学报, 2023, 44(9): 180-187.
SUN Yue, ZHOU Lingfang, ZHOU Qixuan, et al. Finite element analysis of supportive performance and dynamic comfort of sports bra[J]. Journal of Textile Research, 2023, 44(9): 180-187.
[18] ZHONG Z, ZHANG B, HU Y, et al. Comparative morphological evaluation of young women's breast-bra resha** by different bra cups[J]. International Journal of Environmental Research and Public Health, 2023, 20(5): 3856.
doi: 10.3390/ijerph20053856
[19] 钟泽君, 顾冰菲. 基于特征点自动定位的乳房形态参数提取[J]. 服装学报, 2023, 8(3): 211-216.
ZHONG Zejun, GU Bingfei. Breast morphological parameters extraction based on automatic position of feature points[J]. Journal of Clothing Research, 2023, 8(3): 211-216.
[20] 左凯悦, 王永荣, 温惠华, 等. 基于有限元力学模型的文胸-胸部接触仿真研究进展[J]. 丝绸, 2022, 59(12): 71-80.
ZUO Kaiyue, WANG Yongrong, WEN Huihua, et al. Research progress of the brassiere-chest contact simulation based on the finite element mechanical model[J]. Journal of Silk, 2022, 59(12): 71-80.
[21] RUIXIN L, YIP J, YU W, et al. Computational modelling methods for sports bra-body interactions[J]. International Journal of Clothing Science and Technology, 2020, 32(6): 921-934.
doi: 10.1108/IJCST-09-2019-0143
[22] JU M L, JMAL H, DUPUIS R, et al. Visco-hyperelastic constitutive model for modeling the quasi-static behavior of polyurethane foam in large deforma-tion[J]. Polymer Engineering & Science, 2015, 55(8): 1795-1804.
doi: 10.1002/pen.v55.8
[23] 孙静, 马千清, 沈春云, 等. 多模态超声结合免疫组化参数构建列线图预测乳腺癌分子分型相关预后[J]. 中国超声医学杂志, 2024, 40(6): 632-636.
SUN Jing, MA Qianqing, SHEN Chunyun, et al. The predictive value of multimodal ultrasound combined with immunohistochemical parameters to construct nomogram for molecular typing related breast cancer[J]. Chinese Journal of Ultrasound in Medicine, 2024, 40(6): 632-636.
[24] 赵鹏宇, 王宗彦, 丁培燎, 等. 基于机器视觉的并联机器人工件识别定位[J]. 制造技术与机床, 2021(12): 15-20.
doi: 10.19287/j.cnki.1005-2402.2021.12.002
ZHAO Pengyu, WANG Zongyan, DING Peiliao, et al. Location identification of parallel robot based on machine vision[J]. Manufacturing Technology & Machine Tool, 2021(12): 15-20.
[25] GALBREATH S, GOSWAMI T. Biomechanical behavior of female breast: a review[J]. BioMed, 2025, 5(1): 5.
doi: 10.3390/biomed5010005
[26] 潘隽媛, 顾依然, 张梅, 等. 基于三维扫描的文胸模杯建模研究[J]. 毛纺科技, 2022, 50(4): 48-52.
PAN Junyuan, GU Yiran, ZHANG Mei, et al. Research on modeling of bra cup based on 3D scan-ning[J]. Wool Textile Journal, 2022, 50(4): 48-52.
[27] MITSUNO T, YANAGISAWA A K. Comfortable pressure feeling and clothing pressure on abdomen[J]. International Journal of Clothing Science and Technology, 2022, 34(1): 110-118.
doi: 10.1108/IJCST-12-2017-0194
[28] 何崟, 房雨, 杨秀丽, 等. 女性健康监测智能文胸的研发[J]. 针织工业, 2025(4): 66-71.
HE Yin, FANG Yu, YANG Xiuli, et al. Development of intelligent bra with health monitoring function[J]. Knitting Industries, 2025(4): 66-71.
[1] 钟泽君, 张贝贝, 徐凯忆, 王若雯, 顾冰菲. 基于特征参数的青年女性乳房形态分析[J]. 纺织学报, 2022, 43(10): 148-154.
[2] 鲍陈, 缪永伟, 孙瑜亮, 张旭东. 基于散乱点云的三维人体自动测量[J]. 纺织学报, 2019, 40(01): 120-129.
[3] 徐瑶瑶 朱俐莎 杜磊 邹奉元. 文胸模杯曲面形态特征曲线提取与分析[J]. 纺织学报, 2016, 37(11): 103-108.
[4] 张吉生 吴志明 储云明. 经编无缝女束身上衣的塑身性能[J]. 纺织学报, 2014, 35(3): 109-0.
[5] 李晓志 李晓久. 基于部位划分的三维人体曲面模型的构建[J]. 纺织学报, 2013, 34(9): 145-0.
[6] 王晓霞 戴建国 王春霞 端丹. 青年女性体表角度分析[J]. 纺织学报, 2013, 34(7): 106-110.
[7] 陈益松 夏明 林琳. 光栅相移法用于三维人体测量的实验研究[J]. 纺织学报, 2013, 34(6): 83-87.
[8] 王珊珊 王鸿博. 基于三维人体测量的江浙在职男青年颈部形态[J]. 纺织学报, 2013, 34(10): 131-0.
[9] 张宁, 王宏付. 基于三维人体测量的江浙女模特体型分类[J]. 纺织学报, 2012, 33(6): 71-75.
[10] 张金花;王宏付. 基于三维人体测量的女性肩部研究[J]. 纺织学报, 2011, 32(5): 95-97.
[11] 郑娟;戴建国;徐蓉蓉;陈美珍;邵新阳. 立体裁剪专用松量模型的开发[J]. 纺织学报, 2011, 32(3): 105-109.
[12] 钱晓农;尹兵. 基于三维人体测量的人体体型细分识别的研究[J]. 纺织学报, 2011, 32(2): 107-111.
[13] 齐静;李毅;张欣. 我国西部地区青年男性体型描述与体型分类研究[J]. 纺织学报, 2010, 31(5): 107-111.
[14] 陈敏之;邹奉元;张渭源. 女体体型识别专家系统的设计与实现[J]. 纺织学报, 2009, 30(11): 141-144.
[15] 邹奉元;张苏豫;丁笑君;朱小行. 基于C/S模式的女子体型识别及应用[J]. 纺织学报, 2008, 29(6): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!