纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 14-20.doi: 10.13475/j.fzxb.20191002807

• 纤维材料 • 上一篇    下一篇

聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能

贾琳1(), 王西贤1, 陶文娟1, 张海霞1, 覃小红1,2   

  1. 1.河南工程学院 纺织学院, 河南 郑州 450007
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2019-10-14 修回日期:2020-03-10 出版日期:2020-06-15 发布日期:2020-06-28
  • 作者简介:贾琳(1986—),女,副教授,博士。主要研究方向为功能性纳米纤维纺织品的制备。E-mail:lynnjia0328@163.com
  • 基金资助:
    河南省青年人才托举工程项目(2019HYTP011);河南省高校重点科研项目(19A540002)

Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes

JIA Lin1(), WANG Xixian1, TAO Wenjuan1, ZHANG Haixia1, QIN Xiaohong1,2   

  1. 1. College of Textiles, Henan University of Engineering, Zhengzhou, Henan 450007, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-10-14 Revised:2020-03-10 Online:2020-06-15 Published:2020-06-28

摘要:

为研究分析不同抗菌剂对聚丙烯腈(PAN)抗菌纳米纤维的影响,进一步开发功能性纳米纤维纺织品,通过静电纺丝方法制备PAN/三氯生(TCS)、PAN/TiO2抗菌复合纳米纤维膜,借助扫描电子显微镜、傅里叶红外光谱仪等对纳米纤维膜的微观结构和性能进行表征。结果表明:相对于纯 PAN纳米纤维膜,PAN/TCS 和PAN/TiO2抗菌纳米纤维膜的纤维直径减少了39% ~ 71%,拉伸强度增加了12% ~ 88%; PAN/TCS 复合纳米纤维膜对金黄色葡萄球菌和大肠杆菌的抑菌圈都大于1 mm;由于TiO2为非溶出型菌剂,PAN/TiO2复合纳米纤维未发现抑菌圈;PAN/TCS 和PAN/TiO2纳米纤维对金黄色葡萄球菌和大肠杆菌的抑菌率都达到了91.98%以上,且抑菌率随着TCS和TiO2质量分数的增加而增加。

关键词: 聚丙烯腈, 纳米纤维, 三氯生, TiO2, 静电纺丝, 抗菌性能

Abstract:

In order to study and analyze the effects of different antibacterial agents on polyacrylonitrile (PAN) antibacterial nanofibers and further develop functional nanofiber textiles, PAN/triclosan (PAN/TCS) and PAN/TiO2 antibacterial composite nanofiber membranes were prepared through electrospinning technology, and their morphologies and properties were tested and analyzed using scan electron microscope, and Fourier infrared spectrometer. The results show that compared with pure PAN nanofiber membrane, the diameter of PAN/TCS and PAN/TiO2 antibacterial nanofiber membrane decreases by 39%-71%, and the tensile strength increase by 12%-88%. PAN/TCS composite nanofibers show a bacteriostatic zone of more than 1 mm for Staphylococcus aureus and Escherichia coli. However, no bacterial inhibition zone is found in PAN/TiO2 composite nanofibers because TiO2 is a non-soluble antibacterial agent. The antibacterial rates of PAN/TCS and PAN/TiO2 composite nanofibers on Staphylococcus aureus and Escherichia coli reach more than 91.98%, and the inhibitory rates increase when the mass fractions of triclosan and TiO2.

Key words: polyacrylonitrile, nanofiber, triclosan, TiO2, electrospinning, antibacterial property

中图分类号: 

  • TS102.6

图1

PAN抗菌复合纳米纤维膜的扫描电镜照片(×10 000)"

表1

PAN抗菌复合纳米纤维的直径平均值和标准差"

样品编号 直径平均值 直径标准差
1# 887.20 68.40
2# 539.15 45.34
3# 467.95 36.73
4# 261.50 49.24
5# 322.40 70.56

图2

PAN抗菌复合纳米纤维膜的红外光谱图"

图3

静电纺抗菌复合纳米纤维膜的拉伸曲线"

图4

铝箔和PAN抗菌纳米纤维膜对大肠杆菌和金黄色葡萄球菌的定性检测结果"

表2

抗菌复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌圈宽度"

样品编号 大肠杆菌 金黄色葡萄球菌
1#
2# 5.13 8.75
3# 7.48 10.73
4#
5#

图5

PAN复合纳米纤维膜对大肠杆菌抗菌性能定量检测结果"

图6

PAN复合纳米纤维膜对金黄色葡萄球菌抗菌性能定量检测结果"

表3

PAN复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌率"

样品编号 对大肠杆菌抑菌率 对金黄色葡萄球菌抑菌率
2# 99.99 99.99
3# 99.99 99.99
4# 91.98 94.73
5# 97.25 99.18
[1] 黄亮. 病原微生物对人类的威胁[J]. 生物化工, 2019,5(4):135-140.
HUANG Liang. The threat of pathogenic microorganisms to humans[J]. Biological Chemical Engineering, 2019,5(4):135-140.
[2] KHAN M Z, BAHETI V, ASHRAF M. Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles[J]. Fibers and Polymers, 2018,19(8):1647-1654.
[3] GAO B J, ZHANG X, WANG J. Preparation and antibacterial characteristic of water-insoluble antibacterial material QPEI/SiO2[J]. Journal of Materials Science(Materials in Medicine), 2008,19:3021-3028.
[4] 陈杰. 银系抗菌ABS塑料的制备及性能研究[D]. 合肥: 合肥工业大学, 2012: 4-6.
CHEN Jie. Fabrication and property of Ag-doped antibacterial ABS plastic[D]. Hefei: Hefei University of Technology, 2012: 4-6.
[5] GOUDARZI V, IMAN S G, AMIN B Q. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization[J]. International Journal of Biological Macromolecules, 2017,95:306-313.
pmid: 27884670
[6] MOHAMMAD J H, KATHARINA M F, ASHKARRAN A A, et al. Anti-bacterial properties of nano-particles[J]. Trends Biotechnol, 2012,30(10):499-511.
pmid: 22884769
[7] MURANYI P, SCHRAML C, WUNDERLICH J. Antimicrobial efficiency of titanium dioxide-coated surfaces[J]. Journal of Applied Microbiology, 2010,108(6):1966-1973.
pmid: 19886892
[8] 贾琳, 孔繁荣, 王西贤, 等. 聚丙烯腈三氯生纳米级纤维的拉伸性能研究[J]. 棉纺织技术, 2017,45(7):52-55.
JIA Lin, KONG Fanrong, WANG Xixian, et al. Tensile property study of polyacrylonitrile triclosan nano-fiber[J]. Cotton Textile Technology, 2017,45(7):52-55.
[9] 贾琳, 王西贤, 张海霞, 等. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017,38(7):18-22.
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Ultraviolet protective properties of polyacrylonitrile/TiO2 nanofiber[J]. Journal of Textile Research, 2017,38(7):18-22.
[10] ZHU Z, ZHANG Y B, SHANG Y L, et al. Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas[J]. Food and Bioprocess Technology, 2019,12:281-287
[11] PATEL S, HOTA G. Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane[J]. Fibers and Polymers, 2014,15(11):2272-2282.
[12] 张倩. 具有不同释放效果的三氯生抗菌棉纱敷料的制备探索[D]. 上海: 东华大学, 2016: 25-27.
ZHANG Qian. Study on the preparation of triclosan containing antibacterial cotton dressing with different release effects[D]. Shanghai: Donghua University, 2016: 25-27.
[13] 吕晓东. 三氯生杭菌活性骨水泥的体外抑菌实验及生物力学性能的实验研究[D]. 北京:解放军总医院军医进修学院, 2010: 9-10.
LÜ Xiaodong. Bone cement loading with triclosan in vitro: the antibacterial activity and biomechanical properties[D]. Beijing: Chinese PLA General Hospital & Postgraduate Medical School, 2010: 9-10.
[14] 杨秀山. 细菌细胞壁的结构[J]. 微生物学通报, 1982,9(2):43-47.
YANG Xiushan. The structure of a bacterial cell wall[J]. Microbiology China, 1982,9(2):43-47.
[15] 朱孝明, 代子荐, 赵奕, 等. 改性二氧化钛/纺黏-熔喷非织造抗菌复合滤材的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):196-203.
ZHU Xiaoming, DAI Zijian, ZHAO Yi, et al. Fabrication and properties of modified TiO2/spun-bonded and melt-blown nonwoven antibacterial composite filter[J]. Journal of Donghua University(Natural Science), 2019,45(2):196-203.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[10] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[11] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[12] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[13] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[14] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[15] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!