纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 20-28.doi: 10.13475/j.fzxb.20200204109

• 纤维材料 • 上一篇    下一篇

丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能

孙焕惟1, 张恒1,2(), 甄琪3, 朱斐超4, 钱晓明5, 崔景强2,6, 张一风1   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.河南省医用高分子材料技术与应用重点实验室,河南 新乡 453400
    3.中原工学院 服装学院, 河南 郑州 451191
    4.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    5.天津工业大学 纺织科学与工程学院,天津 300387
    6.河南驼人医疗器械集团有限公司, 河南 新乡 453400
  • 收稿日期:2020-02-20 修回日期:2020-05-02 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 张恒
  • 作者简介:孙焕惟(1996—),男,硕士生。主要研究方向为功能性非织造材料的开发。
  • 基金资助:
    国家自然科学基金资助项目(52003306);国家生物医用材料生产应用示范平台资助项目(TC190H3ZV/1);纺织服装产业河南省协同创新中心资助项目(2020-CYY-005);河南省高等学校重点科研项目(20A540001);河南省医用高分子材料技术与应用重点实验室(1-TR-B-03-190227)

Filtrations of propylene-based micro-nano elastic filters via melt blowing process

SUN Huanwei1, ZHANG Heng1,2(), ZHEN Qi3, ZHU Feichao4, QIAN Xiaoming5, CUI Jingqiang2,6, ZHANG Yifeng1   

  1. 1. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang, Henan 453400, China
    3. School of Clothing, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    5. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    6. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
  • Received:2020-02-20 Revised:2020-05-02 Online:2020-10-15 Published:2020-10-27
  • Contact: ZHANG Heng

摘要:

为增强聚丙烯(PP)熔喷非织造材料的弹性以解决其用于过滤材料脆性大、抗拉性差的不足,以共混熔喷法制备了以丙烯基弹性体(PBE)为增强基的PBE/PP基纳微米纤维材料,测试了PBE/PP共混体系的热性能和熔体流变特性,分析了PBE质量分数和熔喷工艺对样品弹性和过滤性能的影响。结果表明,随着PBE用量增加到85%,该共混体系的熔融峰值从173.6 ℃降低到165.1 ℃,结晶度从39.0% 逐渐降低到9.8%;纤维直径在0.4~16 μm 之间呈现二值化分布特性,并且细纤维穿插与粗纤维间以组成立体迂曲的“嵌入”形态;随着PBE的质量分数增大到85%,纤维直径小于2 μm的纤维数量占比增大到68.3%,纵、横向弹性回复率分别增大到81.8%和79.1%,进而样品的过滤效率增大约1.8 倍,静水压增大到 4 699.6 Pa。

关键词: 非织造材料, 熔喷, 丙烯基弹性体, 过滤性能, 静水压阻, 纳微米纤维

Abstract:

In order to enhance the elasticity of polypropylene (PP) melt blown nonwovens to solve brittleness and poor tensile strength when used as filters, samples of PBE/PP micro-nano fibrous materials reinforced with propylene-based elastomer (PBE) were prepared through the blending melt blowing process. The thermal properties and rheological properties of the PBE/PP blends were tested and the effects of PBE mass ratio and melt blowing process parameters on elasticity and filtration properties of the samples were studied. The results show that the melting peak of the blends decreases from 173.6 ℃ to 165.1 ℃ and the crystallinity gradually decreases from 39.0% to 9.8% as the PBE mass ratio is increased to 85%. Scanning electron microscope (SEM) images show that the fiber diameter (df) distribution indicates binary feature in the range of 0.4-16 μm. The fine fibers are interspersed with the coarse ones to form a three-dimensional tortuous "embed" network. As the mass fraction of PBE increases to 85%, the proportion of the fine fibers with df of less than 2 μm increases to 68.3%, and the elastic recovery rate of the samples in the machine direction and cross direction increases to 81.8% and 79.1%, respectively. The filtration efficiency increases by about 1.8 times, and the hydrostatic pressure resistance increases to 4 699.6 Pa.

Key words: nonwoven, melt blown, propylene-based elastomer (PBE), filtration performance, hydrostatic pressure resistance, micro-nano fiber

中图分类号: 

  • TS176

表1

PBE/PP熔喷非织造材料的工艺"

设备 特征参数 温度设定/℃
螺杆
挤出机
直径为25 mm,
长径比为28∶1
一区 160
二区 215
三区 245
四区 245, 255, 265, 275, 285
五区 245, 255, 265, 275, 285
计量泵 规格为3 mL/r,
转速为5 r/min
245, 255, 265, 275, 285
熔喷模头 喷丝孔径为0.35 mm,
长径比为12∶1
245, 255, 265, 275,285
罗茨风机 风量为3.3 m3/min,
风压为45 kPa
260
其他 接收距离为9, 12, 18, 24和32 cm

图1

PBE/PP共混聚合物的DSC曲线"

表2

聚合物的DSC数据"

编号 m(PBE)∶m(PP) Tm/℃ ΔHm/(J·g-1) ΔHc/(J·g-1) Xc/%
1# 0∶100 173.6 81.5 -98.9 39.0
2# 25∶75 171.0 80.2 -91.2 38.4
3# 50∶50 167.9 70.8 -90.2 33.9
4# 75∶25 166.3 46.4 -53.9 22.2
5# 85∶15 165.1 20.5 -25.2 9.8

图2

聚合物的流变曲线"

图3

不同PBE比例的样品表面形态电镜照片"

图4

不同比例的样品直径分布"

图5

不同模头温度的样品表面形态电镜照片"

图6

不同接收距离的样品横截面形态电镜照片"

图7

样品的弹性回复曲线"

表3

样品的拉伸弹性数据"

编号 方向 塑性
变形率
弹性
回复率
急弹性
变形率
缓弹性
变形率
5# 18.22 81.78 61.85 19.93
20.86 79.14 51.98 27.16
4# 27.46 72.54 51.45 21.09
27.56 72.44 44.22 28.22
3# 29.63 70.37 44.44 25.93
32.10 67.9 38.77 29.13
2# 35.00 65.00 36.25 28.75
35.80 64.20 34.57 29.63

图8

样品的过滤性能"

图9

样品的静水压"

[1] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020,41(3):168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020,41(3):168-174.
[2] DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019,165:174-179.
doi: 10.1016/j.polymer.2019.01.035
[3] ZHANG Heng, ZHEN Qi, LIU Yong, et al. One-step melt blowing process for pp/peg micro-nanofiber filters with branch networks[J]. Results in Physics, 2019,12:1421-1428.
doi: 10.1016/j.rinp.2019.01.012
[4] ZHU Feichao, SU Juanjuan, ZHAO Yonghuan, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid)[J]. Textile Research Journal, 2019,89(19/20):4173-4185.
doi: 10.1177/0040517519826926
[5] 桂继杨, 陈钢进, 肖春平, 等. 基于熔喷过程的等规聚丙烯中拟六方与α混合晶的构成及其稳定性[J]. 材料科学与工程学报, 2017,35(1):32-36,72.
GUI Jiyang, CHEN Gangjin, XIAO Chunpin, et al. Constitution and stability of mixture of mesomorphic and α crystal in isotactic polypropylene by melt-blown process[J]. Journal of Materials Science and Engineering, 2017,35(1):32-36,72.
[6] HE Xiaozhen, RYTÖLUOTO Ilkka, ANYSZKA Rafal, et al. Surface modification of fumed silica by plasma polymerization of acetylene for pp/poe blends dielectric nanocomposites[J]. Polymers, 2019,11(12):1957.
doi: 10.3390/polym11121957
[7] 刘妙峥, 吴海波. 聚四氟乙烯/聚丙烯杂化熔喷滤料结构与性能[J]. 东华大学学报(自然科学版), 2019,45(3):353-357.
LIU Miaozheng, WU Haibo. Structure and performance of polytetrafluoroethylene/polypropylene hybrid melt-blown filtration materials[J]. Journal of Donghua University (Natural Science), 2019,45(3):353-357.
[8] PENG Mengna, JIA H, JIANG L, et al. Study on structure and property of PP/TPU melt-blown nonwovens[J]. The Journal of the Textile Institute, 2018,110(3):468-475.
doi: 10.1080/00405000.2018.1485461
[9] YANG Byungjin, LIM Kisub. Properties of vistamaxx/polypropylene side-by-side bicomponent melt-blown nonwoven improved water repellent and vapor permeability[J]. Textile Science and Engineering, 2016,53(1):128-133.
doi: 10.12772/TSE.2016.53.128
[10] LI Hui, HUANG Hui, MENG Xiaohui, et al. Fabrication of helical microfibers from melt blown polymer blends[J]. Journal of Polymer Science Part B: Polymer Physics, 2018,56(13):970-977.
doi: 10.1002/polb.v56.13
[11] 付小栓. 熔喷用共混弹性聚合物切片性能分析[J]. 产业用纺织品, 2018(5):31-35.
FU Xiaoshuan. Performance analysis of blended elastomer polymer chips for melt-blown process[J]. Technical Textiles, 2018(5):31-35.
[12] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018,8(15):7932-41.
doi: 10.1039/C7RA10916D
[13] THOMAS T A, ANDY C C, GERT J C, et al. Propylene based meltblown nonwoven layers and composite structures: US 20080199673A1[P]. 2008-08-21.
[14] TAKESHI Miyamura, HIDEYUKI Kobayashi, TETSUYA Masugi. Stretchable nonwoven fabric: JP4845587B2[J]. 2011-11-28.
[15] KIM Doyoung, KIM Gihong, LEE Dongyun, et al. Effects of compatibility on foaming behavior of polypropylene/polyolefin elastomer blends prepared using a chemical blowing agent[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.45201.
doi: 10.1002/app.40297 pmid: 25382868
[16] AHMADI Amirhossein, FREIRE Juan J. Molecular dynamics simulation of miscibility in several polymer blends[J]. Polymer, 2009,50(20):4973-4978.
doi: 10.1016/j.polymer.2009.08.010
[17] 黄溢美. SEBS/PP共混物的相容性与可纺性研究及其熔喷非织造布的制备[D]. 杭州:浙江理工大学, 2015: 12-14.
HUANG Yimei. The study of the compatibility and spinnability of sebs/pp composites and the preparation of sebs/pp melt blown nonwoven[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 12-14.
[18] PENG Hui, LU Min, LV Fucheng, et al. Understanding the effect of silane crosslinking reaction on the properties of PP/POE blends[J]. Polymer Bulletin, 2019,76:6413-6428.
doi: 10.1007/s00289-019-02724-z
[19] 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019,40(9):28-34.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019,40(9):28-34.
[20] 胡胜, 侯一凡, 王雄, 等. 橡胶与弹性体增韧改性聚丙烯的研究进展[J]. 合成树脂及塑料, 2019,36(5):104-109.
HU Sheng, HOU Yifan, WANG Xiong, et al. Research progress of rubber and elastomer toughening modified PP[J]. China Synthetic Resin and Plastics, 2019,36(5):104-109.
[21] 赵亚茹. 基于不锈钢混纺纱的弹性电磁屏蔽织物开发及性能研究[D]. 上海:东华大学, 2019: 30.
ZHAO Yaru. Development and properties of elastic electromagnetic shielding fabric based on stainless steel blended yarn[D]. Shanghai:Donghua University, 2019: 30.
[22] ZHANG Heng, ZHEN Qi, GUAN Xiaoyu. Fluffy Polypropylene-polyethylene glycol fabrics with branched micro- and nanofibrous structures for rapid liquid transport[J] Polymer Testing, 2019. DOI: 10.1016/j.polymertesting.2019.106310.
pmid: 23390325
[23] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018,8(15):7932-7941.
doi: 10.1039/C7RA10916D
[24] ZHU Xiaoming, DAI Zijian, XU Kanli, et al. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation[J]. Macromolecular Materials and Engineering, 2019. DOI: 10.1002/mame.201900350.
pmid: 22184499
[25] 王洁, 殷保璞, 靳向煜. SMS手术衣材料的“三拒一抗/单向导湿”双面泡沫整理[J]. 东华大学学报(自然科学版), 2014,40(4):476-480.
WANG Jie, YIN Baopu, JIN Xiangyu. Three repellent and antistatic/directional water-transfer" foam coating finishing for SMS surgical gown material on two sides[J]. Journal of Donghua University (Natural Science), 2014,40(4):476-480.
[1] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[2] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[3] 夏磊, 程博闻, 西鹏, 庄旭品, 赵义侠, 刘亚, 康卫民, 任元林. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(08): 166-171.
[4] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[5] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[6] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[7] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[8] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20-25.
[9] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[10] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175-180.
[11] 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127.
[12] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
[13] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[14] 程博闻 高鲁 SARMAD Bushra 邓南平 康卫民. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
[15] 陈明军 张有忱 杜琳 李好义 丁玉梅 杨卫民. 聚合物熔体法制备纳米纤维技术研究现状[J]. 纺织学报, 2018, 39(12): 166-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!