纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 81-86.doi: 10.13475/j.fzxb.20200307106

• 染整与化学品 • 上一篇    下一篇

织物表面导电线路喷射打印起始端凸起形成过程研究

肖渊1,2(), 王盼1, 张威1, 张成坤1   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安工程大学 西安市现代智能纺织装备重点实验室, 陕西 西安 710600
  • 收稿日期:2020-03-27 修回日期:2020-08-30 出版日期:2020-12-15 发布日期:2020-12-23
  • 作者简介:肖渊(1975—),男,教授,博士。主要研究方向为机电控制技术、微滴喷射自由成形技术和新型传感器及现代检测技术。E-mail: xiaoyuanjidian@xpu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51475350);西安市现代智能纺织装备重点实验室资助项目(2019220614SYS021CG043)

Research on forming process of bulge at start of jet printing conductive circuit on fabric surfaces

XIAO Yuan1,2(), WANG Pan1, ZHANG Wei1, ZHANG Chengkun1   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
  • Received:2020-03-27 Revised:2020-08-30 Online:2020-12-15 Published:2020-12-23

摘要:

为提高织物表面微滴喷射打印导电线路的成形质量,针对导电线路喷射打印过程中线路沉积形貌的起始端凸起现象,利用高速相机对线路成形过程进行采集,研究微滴间融合振荡过程中左右接触角的动态变化,微滴与线路融合以及液体向线路起始端的输送过程,提出线路起始端凸起的消除方案并进行实验。结果表明:在融合振荡过程中,微滴向起始端的振荡趋势始终大于向另一侧的振荡趋势,导致打印线路起始端的织物基板润湿区域不断扩大;微滴与线路接触后,其中一部分液体润湿织物基板拓展线路长度,一部分通过线路以恒定速度输送至起始端,在线路起始端形成凸起;利用抗坏血酸溶液润湿织物表面后,成形线路起始端凸起现象得到消除,整体线路路径均匀,沉积形貌良好。

关键词: 智能纺织品, 微滴喷射, 导电线路, 沉积形貌, 起始端凸起

Abstract:

In order to improve the forming quality of the conductive circuit on a fabric surface printed by the microdroplet jet printing technique, a high-speed camera was used to capture the process of droplet-jet printing conductive circuit in view of the bulged deposition lines at the start. The dynamic changes of left and right contact angles during the fusion oscillation between droplet, the fusion of droplet with the circuits and the process of transporting liquid to the starting of the line were studied according to the bulge elimination scheme. The results show that during the oscillation process of droplets coalescence, the oscillation trend towards the starting end is always greater than the other end, causing continuous expansion of the substrate wetting area at start of the printing circuit. After the droplets contact the circuit, part of the liquid wets the substrate to extend the length of the circuit, and the rest of the liquid is transported to the starting of the circuit at a constant speed to form a bulge. The surface of the fabric moistened with the ascorbic acid solution eliminates the bulging at the start of the forming circuit, leading to formation of expected uniform dimension of the deposited lines.

Key words: intelligent textile, microdroplet jetting, conductive circuit, deposition formation, bulge at start

中图分类号: 

  • TH16

图1

气动式微滴喷射打印沉积系统"

图2

线路起始端微滴融合过程"

图3

质量中心位置及基板润湿区域示意图"

图4

左、右接触角测量示意图"

图5

左、右接触角在微滴融合过程中的变化"

图6

织物基板上微滴喷射打印过程"

图7

线路表面轮廓测量示意图"

图8

x1、x2、x3 处线路轮廓高度随时间变化过程"

图9

线路不同位置首次达高度极大值时间"

图10

成形线路扫描电镜照片及能谱图"

[1] 李思明, 吴官正, 胡雨洁, 等. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019,40(7):138-144.
LI Siming, WU Guanzheng, HU Yujie, et al. Preparation of pressure distribution monitoring socks and related sensing properties[J]. Journal of Textile Research, 2019,40(7):138-144.
[2] BHUVANESHWARI B, PRADEEP N, KUMAR P, et al. Smart army jacket[J]. Perspectives in Communication, Embedded-systems and Signal-Processing, 2019,2(10):241-244.
[3] FERNÁNDEZ-CARAMÉS T, FRAGA-LAMAS P. Towards the internet-of-smart-clothing: a review on iot wearables and garments for creating intelligent connected e-textiles[J]. Electronics, 2018,7(12):405.
[4] 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018,39(5):160-169.
YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018,39(5):160-169.
[5] GHAHREMANI H M, LATIFI M. Overview of wearable electronics and smart textiles[J]. The Journal of The Textile Institute, 2017,108(4):631-652.
[6] 谢丹, 张鸿海, 舒霞云, 等. 气动膜片式微滴喷射装置理论分析与实验研究[J]. 中国机械工程, 2012,23(14):1732-1737.
XIE Dan, ZHANG Honghai, SHU Xiayun, et al. Theoretical analysis and experimental research on pneumatically diaphragm-driven drop-on-demand inkjet generator[J]. China Mechanical Engineering, 2012,23(14):1732-1737.
[7] 李素丽, 魏正英, 杜军, 等. 基于金属3D打印技术成形嵌套零件工艺研究[J]. 材料科学与工艺, 2016,24(6):1-7.
LI Suli, WEI Zhengying, DU Jun, et al. Research of 3D printing technology based on metal double nozzle to form the hanging parts[J]. Materials Science and Technology, 2016,24(6):1-7.
doi: 10.1179/174328407X245779
[8] NEGRO A, CHERBUIN T, LUTOLF M P. 3D inkjet printing of complex, cell-laden hydrogel structures[J]. Scientific Reports, 2018,8(1):17099.
pmid: 30459444
[9] JALKANEN T, MÄKILÄ E, MÄÄTTÄNEN A, et al. Porous silicon micro- and nanoparticles for printed humidity sensors[J]. Applied Physics Letters, 2012,101(26):263110-263114.
[10] 张楠, 林健, 王同举, 等. 用于打印柔性导线的液态金属微滴制备过程研究[J]. 电子元件与材料, 2018,37(7):1-7.
ZHANG Nan, LIN Jian, WANG Tongju, et al. Formation process of liquid metal droplets using for printing flexible conductive wires[J]. Electronic Components and Materials, 2018,37(7):1-7.
[11] DUINEVELD P C. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate[J]. Journal of Fluid Mechanics, 2003,477:175-200.
[12] SCHIAFFINO S, SONIN A A. Formation and stability of liquid and molten beads on a solid surface[J]. Journal of Fluid Mechanics, 1997,343:95-110.
[13] STRINGER J, DERBY B. Formation and stability of lines produced by inkjet printing[J]. Langmuir, 2010,26(12):10365-10372.
doi: 10.1021/la101296e pmid: 20481461
[14] LEE S H, CHO Y J. Characterization of silver inkjet overlap-printing through cohesion and adhesion[J]. Journal of Electrical Engineering and Technology, 2012,7(1):91-96.
[15] LIAN H, QI L, LUO J, et al. Uniform nitrogen-doped graphene lines with favorable outlines printed by elaborate regulation of drying and overlapping[J]. Applied Surface Science, 2019,473:614-621.
doi: 10.1016/j.apsusc.2018.12.176
[16] 王春晖. 基于微流体数字化喷射技术的直写导线技术研究[D]. 南京: 南京理工大学, 2006: 41-49.
WANG Chunhui. Research on the technology of direct write wire based on microfluidic digital jet tech-nology[D]. Nanjing: Nanjing University of Science and Technology, 2006: 41-49.
[17] 肖渊, 尹博, 李岚馨, 等. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019,40(5):78-83.
XIAO Yuan, YIN Bo, LI Lanxin, et al. Influence of process conditions on silver conductive lines by micro-droplet jet printing solution reaction[J]. Journal of Textile Research, 2019,40(5):78-83.
[18] CASTREJON-PITA J R, BETTON E S, KUBIAK K J, et al. The dynamics of the impact and coalescence of droplets on a solid surface[J]. Biomicrofluidics, 2011,5(1):014112.
[19] BERKER R A. Intégration des équations du mouvement d'un fluide visqueux incompressible[M]. Berlin: Handbuch der Physik, 1963,3:1-34.
[1] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[2] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[3] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[4] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[5] 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123.
[6] 吴荣辉, 马丽芸, 张一帆, 刘向阳, 于伟东. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49.
[7] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[8] 肖渊, 尹博, 李岚馨, 刘欢欢. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019, 40(05): 78-83.
[9] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[10] 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88.
[11] 王勃翔 刘丽 路艳华 李金华 张松 汪刘才 韩思杰 刘禹辰 . 互穿聚合物网络温敏凝胶对棉织物液态水分传递的影响[J]. 纺织学报, 2018, 39(11): 79-84.
[12] 张岩 裴泽光 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(05): 25-31.
[13] 肖渊 刘金玲 申松 陈兰. 织物表面微滴喷射打印沉积过程试验研究[J]. 纺织学报, 2017, 38(05): 139-144.
[14] 蒋约林 吴金丹 何驹 葛华云 王际平. 氨基硅油整理法在温敏纺织品制备中的应用[J]. 纺织学报, 2015, 36(02): 86-91.
[15] 陈园园;杨斌;金子敏. 可控发光织物的研制及其亮度表征[J]. 纺织学报, 2008, 29(8): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!