纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 74-79.doi: 10.13475/j.fzxb.20201008207

• 纺织工程 • 上一篇    下一篇

涤纶/蚕丝机织心脏瓣膜的制备及其性能

黄笛1,2, 李芳1,2, 李刚1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-10-29 修回日期:2020-11-25 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 李刚
  • 作者简介:黄笛(1997—),男,硕士生。研究方向为生物医用纺织材料。
  • 基金资助:
    国家重点研发计划项目(2017YFC1103600);纺织之光应用基础研究计划项目(J202002);江苏省第十五批“六大人才高峰”高层次人才项目(GDZB-035);中国纺织工业联合会科技指导性项目(2018054)

Preparation and performance of polyester/silk woven heart valve

HUANG Di1,2, LI Fang1,2, LI Gang1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2020-10-29 Revised:2020-11-25 Online:2021-02-15 Published:2021-02-23
  • Contact: LI Gang

摘要:

为研制具有优良力学性能和抗血液渗透性能的人工心脏瓣膜,采用涤纶(PET)长丝和脱胶蚕丝(SF),选取不同组织结构、纱线线密度和织物经纬密等参数,在小型织机上通过优化设计试验制备了PET/SF机织人工心脏瓣膜织物(AHVF),并探讨对人工瓣膜的定制化设计。结果表明:制备的AHVF的厚度小于(0.52±0.1) mm,具有良好的亲水性,水接触角为60°±1.2°,接近于自体心脏瓣膜;AHVF的力学性能具有各向异性特征,经向弹性模量为60~100 MPa, 经向断裂强度为20~40 MPa,纬向弹性模量为7~50 MPa,纬向断裂强度为7.5~20 MPa,水渗透性低于300 mL/(cm 2·min),达到了心脏瓣膜的标准,具备作为心脏瓣膜的可能。

关键词: 涤纶, 蚕丝, 机织心脏瓣膜织物, 力学性能, 渗透性能

Abstract:

In order to develop an artificial heart valve with required mechanical properties and blood-proof performance, polyester (PET) multifilament and degummed silk fibroin (SF) were used for preparing woven artificial heart valve fabric (AHVF) through optimized design experiments on a sample weaving machine, with different structures, yarn linear densities and fabric densities. The optimization results show that when the thickness of AHVF is as thin as (0.52±0.1) mm, the AHVF demonstrates good hydro-philicity with contact angel of (60°±1.2°) which is closed to human heart valve. It is shown that AHVF has anisotropic mechanical properties and low permeability, with warp elastic modulus being 60~100 MPa, warp breaking strength 20~40 MPa, weft elastic modulus 7~50 MPa, weft breaking strength 7.5~20 MPa, and water permeability lower than 300 mL/(cm 2·min). Such properties of AHVF meet the standards for heart valve materials, indicating the feasibility of the AHVF for heart valve application.

Key words: polyester, silk, woven heart valve fabric, mechanical property, liquid permeability

中图分类号: 

  • TS106

图1

PET/SF机织心脏瓣膜织物的制备流程图"

表1

正交试验因素和水平表"

水平 织物组织
A
原料(经/纬)
B
密度/(根·(10 cm)-1)
C
经向 纬向
1 平纹 涤纶/涤纶 500 200
2 二上二下斜纹 涤纶/蚕丝 500 300
3 三上一下斜纹 蚕丝/蚕丝 500 400

表2

试样的参数"

编号 织物组织 经纱 纬纱 纬纱
线密度
密度/
(根·(10 cm)-1)
经向 纬向
1# 平纹 涤纶 涤纶 3.33 tex 500 200
2# 二上二下斜纹 涤纶 蚕丝 3.33 tex 500 200
3# 三上一下斜纹 蚕丝 蚕丝 8.33(36 f) tex 500 200
4# 平纹 涤纶 蚕丝 3.33 tex 500 300
5# 二上二下斜纹 蚕丝 蚕丝 8.33(36 f) tex 500 300
6# 三上一下斜纹 涤纶 涤纶 3.33 tex 500 300
7# 平纹 蚕丝 蚕丝 8.33(36 f) tex 500 400
8# 二上二下斜纹 涤纶 涤纶 3.33 tex 500 400
9# 三上一下斜纹 涤纶 蚕丝 3.33 tex 500 400

图2

不同纱线的电镜照片(×1 000) 注:O为对照纱线;P为上浆纱线;Q为退浆20 min纱线;R为退浆60 min纱线;S为退浆120 min纱线。"

图3

不同纱线的红外图谱和X射线衍射图谱"

图4

试样扫描电镜照片(×50)"

图5

试样的厚度 注:*表示显著性分析p<0.05。"

表3

试样的极差分析结果"

极差 A B C
RT/mm 0.05 0.14 0.07
RB/MPa 6.37 9.44 6.73
RE/MPa 12.43 17.71 14.03
RC/(°) 145.67 831.67 5.38
RW/(mL·(cm2·min)-1) 3.61 33.20 579.00

图6

试样的断裂强度和弹性模量 注:*表示显著性分析p<0.05。"

图7

试样的表面水接触角 注:*表示显著性分析p<0.05。"

图8

试样的水渗透性 注:*表示显著性分析p<0.05。"

[1] DOHMEN P M, KONERTZZ W. Tissue-engineered heart valve scaffolds[J]. Ann Thorac Cardiovasc Surg, 2009,15(6):362-367.
[2] MURAT G, HOANG D L, JASON A B. Shear-thinning hydrogels for biomedical applications[J]. Soft Matter, 2011,8(2):260-272.
[3] WANG H, MORTEN B H. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels[J]. Advanced Materials, 2011,23(12):119-124.
[4] SEWELL-LOFTIN M K, CHUN Y, KHADEMHO-SSEINI A. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology[J]. Journal of Cardiovascular Translational Research, 2011,4(5):658-671.
[5] PADALA Muralidhar, KEELING William Brent, GUYTON Robert A, et al. Innovations in therapies for heart valve disease[J]. Circulation Journal, 2011,75(5):1028-1041.
doi: 10.1253/circj.cj-11-0289 pmid: 21478626
[6] FREDERICK J S, ROBERT J L. Calcification of tissue heart valve substitutes: progress toward understanding and prevention[J]. Annals of Thoracic Surgery, 2005,79(3):1072-1080.
[7] JONATHAN T B, GRETCHEN J M, LAURA A H. Aortic valve disease and treatment: the need for naturally engineered solutions[J]. Advanced Drug Delivery Reviews, 2011,63(4/5):242-268.
[8] VINEET R J, AVRUM I G. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology[J]. American Journal of Pathology, 2007,171(5):1407-1418.
[9] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020,41(9):191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020,41(9):191-200.
[10] 刘泽堃, 李刚, 李毓陵, 等. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017,38(7):155-163.
LIU Zekun, LI Gang, LI Yuling, et al. Research progress of biomedical textile artificial blood vessel[J]. Journal of Textile Research, 2017,38(7):155-163.
[11] XIE M, LI Y, ZHAO Z, et al. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2[J]. Materials Letters, 2016,167:175-178.
[12] CARUBELLI I, SARATHCHANDRA P, et al. The potential of anisotropic matrices as substrate for heart valve engineering[J]. Biomaterials, 2014,35(6):1833-1844.
pmid: 24314554
[13] LIU Z, ZHENG Z, CHEN K, et al. A heparin-functionalized woven stent graft for endovascular exclusion[J]. Colloids and Surfaces B: Biointerfaces. 2019,180:118-126.
doi: 10.1016/j.colsurfb.2019.04.027 pmid: 31035055
[14] LI G, LIU Y, LAN P, et al. A prospective bifurcated biomedical stent with seamless woven structure[J]. Journal of The Textile Institute, 2013,104(9):1017-1023.
[15] 李刚, 李毓陵, 陈旭炜, 等. 分叉人造血管的制备技术研究[J]. 产业用纺织品, 2008,26(8):9-12.
LI Gang, LI Yuling, CHEN Xuwei, et al. Preparation technology of bifurcated artificial blood vessel[J]. Industrial Textiles, 2008,26(8):9-12.
[16] 刘泽堃, 李刚, 李毓陵, 等. 纤维基腔内隔绝分叉机织人造血管的研究[J]. 产业用纺织品, 2017,35(6):6-13.
LIU Zekun, LI Gang, LI Yuling, et al. Study on fiber-based endovascular graft exclusion with bifurcations[J]. Technical Textiles, 2017,35(6):6-13.
[17] LIU Z, LI G, ZHENG Z, et al. Silk fibroin-based woven endovascular prosjournal with heparin surface modifica-tion[J]. Journal of Materials Science Materials in Medicine, 2018,29(4):46.
doi: 10.1007/s10856-018-6055-3 pmid: 29651619
[18] GUO F, JIAO K, BAI Y, et al. Novel transcatheter aortic heart valves exhibiting excellent hemodynamic performance and low-fouling property[J]. Journal of Materials Science & Technology, 2019,35(1):207-215.
[1] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[2] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[3] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[4] 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52.
[5] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[6] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[7] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[8] 张婷婷, 张杰, 田新宇, 陈祯, 任玮. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12): 174-181.
[9] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[10] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[11] 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121.
[12] 黄阳阳, 刘伟, 华英, 赵中琦, 徐劲. 幼童用智能示警蚕丝被的研发[J]. 纺织学报, 2020, 41(10): 150-157.
[13] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[14] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[15] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!