纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 31-37.doi: 10.13475/j.fzxb.20200805707

• 纤维材料 • 上一篇    下一篇

空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能

刘朝军1,2, 刘俊杰1(), 丁伊可2, 马少锋2, 张秀琴2, 张建青2   

  1. 1.天津大学 天津市室内空气环境质量监控重点实验室, 天津 300072
    2.浙江金海环境技术股份有限公司, 浙江 绍兴 311817
  • 收稿日期:2020-08-12 修回日期:2021-02-05 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 刘俊杰
  • 作者简介:刘朝军(1981—),男,高级工程师,博士。主要研究方向为空气过滤材料及过滤系统。
  • 基金资助:
    国家重点研发计划项目(2018YFC0705202)

Preparation and properties of expanded polytetrafluoroethylene membrane composites with high dust holding capacity for high efficiency air filtration

LIU Chaojun1,2, LIU Junjie1(), DING Yike2, MA Shaofeng2, ZHANG Xiuqin2, ZHANG Jianqing2   

  1. 1. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
    2. Zhejiang Goldensea Environment Technology Co., Ltd., Shaoxing, Zhejiang 311817, China
  • Received:2020-08-12 Revised:2021-02-05 Online:2021-05-15 Published:2021-05-20
  • Contact: LIU Junjie

摘要:

为提高膨体聚四氟乙烯 (ePTFE)膜的容尘性能,拓展ePTFE膜复合材料在净化领域的应用,通过将不同厚度、不同纤维直径以及驻极处理后的聚丙烯熔喷过滤材料作为容尘层与ePTFE膜复合制备ePTFE复合材料,并对复合材料的容尘性能以及微观结构进行分析。结果表明:复合材料的容尘量随容尘层厚度增加呈线性增加趋势,容尘层厚度为0.45 mm时,复合材料的容尘量达到6.37 g/m2,较ePTFE膜提高了266%;复合材料的容尘量随容尘层纤维直径的减小呈增加趋势,容尘层纤维直径为1.462 μm时,复合材料的容尘量达7.96 g/m2,较ePTFE膜提高了357%;驻极处理后,容尘层纤维直径为3.611 μm时,复合材料的容尘量较驻极处理前提高了136%。

关键词: 膨体聚四氟乙烯, 玻璃纤维滤纸, 聚丙烯熔喷过滤材料, 容尘量, 空气过滤

Abstract:

In order to improve the dust holding capacity of expanded polytetrafluoroethylene (ePTFE) membrane, and expand the application of ePTFE membrane composite materials in the field of clean room purification, polypropylene (PP) melt blown filter material with different thickness, fiber diameter and electret treatment was used as dust holding layer for the preparation of ePTFE membrane composite. The dust holding performance and microstructure of the composite were analyzed. The results show that the dust holding capacity of the composites increases linearly with the increase of the dust layer thickness. When the dust layer thickness is 0.45 mm, the dust holding capacity of the composite reaches 6.37 g/m2, which is 266% higher than that of the ePTFE membrane. The dust holding capacity of the composite increases as the dust layer fiber diameter decreases. When the fiber diameter of the dust layer is 1.462 μm, the dust holding capacity of the composite increases to 7.96 g/m2, which is 357% higher than that of the ePTFE membrane. After electret treatment, when the fiber diameter of the dust layer is 3.611 μm, the dust holding capacity of the composite increases by 136% compared with that before electret treatment.

Key words: expanded polytetrafluoroethylene, glass fiber filter paper, polypropylene melt blown filter material, dust holding capacity, air filter

中图分类号: 

  • TB332

表1

ePTFE膜及玻璃纤维滤纸参数表"

材料 过滤效率/
%
过滤阻力/
Pa
厚度/
mm
面密度/
(g·m-2)
ePTFE膜 99.984 146.98 0.43 83.0
玻璃纤维滤纸 99.976 276.53 0.53 76.0

图1

复合材料结构示意图"

表2

原材料性能参数"

材料
序号
样品厚度/
mm
面密度/
(g·m-2)
纤维直径/
μm
过滤阻力/
Pa
过滤效率/
%
1-1 0.43 83.0 146.98 99.984
1-2 0.53 76.0 276.53 99.976
2-1 0.15 9.2 2.297 10.58 13.877
2-2 0.21 15.1 2.297 14.52 17.668
2-3 0.31 21.6 2.297 20.00 25.574
2-4 0.45 28.8 2.297 31.23 36.475
3-1 0.46 28.8 1.462 42.83 51.157
3-2 0.45 28.8 2.297 31.23 36.475
3-3 0.45 29.8 2.875 22.43 24.103
3-4 0.46 29.8 3.611 15.13 15.173
3-5 0.47 27.8 5.552 5.60 5.772
4-1 0.43 28.8 1.462 41.35 99.998
4-2 0.42 28.8 2.297 35.80 99.988
4-3 0.43 29.8 2.875 23.13 99.848
4-4 0.43 29.8 3.611 15.33 98.443
4-5 0.44 27.8 5.552 6.75 89.530

图2

ePTFE膜和玻璃纤维滤纸的容尘曲线"

图3

容尘前后ePTFE膜和玻璃纤维滤纸表面SEM照片(× 2 000)"

图4

不同容尘层厚度复合材料阻力增长速率曲线"

图5

不同容尘层厚度复合材料容尘量比较"

图6

容尘后ePTFE膜和容尘层表面SEM照片(× 2 000)"

图7

容尘层不同纤维直径复合材料阻力增长速率"

图8

容尘层不同纤维直径复合材料容尘量对比"

图9

容尘后ePTFE膜表面和容尘层迎风/背风表面SEM照片(× 2 000)"

图10

不同纤维直径容尘层驻极前后复合材料的容尘量对比"

图11

驻极容尘后ePTFE膜表面和容尘层迎风/背风面SEM照片(× 2 000)"

[1] 杨春雪, 阚海东, 陈仁杰. 我国大气细颗粒物水平、成分、来源及污染特征[J]. 环境与健康杂志, 2011,28(8):735-738.
YANG Chunxue, KAN Haidong, CHEN Renjie. Research on level, composition, source and pollution characteristics of ambient fine particles in China[J]. Journal of Encironment Health, 2011,28(8):735-738.
[2] PUI D Y H, CHEN S C, ZUO Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014,13:2-26.
[3] 刘英军. 电子工业厂房节能分析与研究[D]. 成都:西华大学, 2012: 1-6.
LIU Yingjun. Energy-saving analysis and study of the electronics industry[D]. Chengdu:Xihua University, 2012: 1-6.
[4] 章忠飞, 翟传明, 李晨, 等. 电子工业洁净室的洁净度关键影响因素及解决方案探讨[J]. 智能建筑与智慧城市, 2019(2):41-43.
ZHANG Zhongfei, ZHAI Chuanming, LI Chen, et al. Discussion on key influencing factors and solutions for the cleanliness of clean rooms in the electronics industry[J]. Intelligent Building & City Information, 2019(2):41-43.
[5] 刘炜, 刘俊杰, 马群. 非单向流洁净室洁净度的理论计算与实验研究[J]. 建筑科学, 2010,26(10):76-83.
LIU Wei, LIU Junjie, MA Qun. Theoretical calculation and experimental study on cleanliness of non-unidirectional flow clean room[J]. Building Science, 2010,26(10):76-83.
[6] BIRCHSTER C A, KAHN J E, FOWLER A B. Air purification manual[M]. Beijing: Atomic Energy Press, 1981: 46.
[7] TANG M, HU J, LIANG Y, et al. Pressure drop, penetration and quality factor of filter paper containing nanofibers[J]. Textile Research Journal, 2017,87(4):498-508.
doi: 10.1177/0040517516631318
[8] 郝新敏, 杨元, 黄斌香. 聚四氟乙烯微孔膜及纤维[M]. 北京: 化学工业出版社, 2011: 3-21.
HE Xinmin, YANG Yuan, HUANG Binxiang. PTFE micropore and its fiber[M]. Beijing: Chemical Industry Press, 2011: 3-21.
[9] 刘鸿洋, 林忠平, 张万毅, 等. 基于PTFE高效滤料结构的容尘性能研究[J]. 建筑热能通风空调, 2016,35(4):35-37.
LIU Hongxiang, LIN Zhongping, ZHANG Wanyi, et al. A clogging capacity study of PTFE HEPA medium structure[J]. Building Energy & Environment, 2016,35(4):35-37.
[10] LEUNG W F, HUNG C H. Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols[J]. Separation and Purification Technology, 2008,63(3):691-700.
doi: 10.1016/j.seppur.2008.07.015
[11] LEUNG W F, HUNG C H, YUEN P T. Experimental investigation on continuous filtration of sub-micron aerosol by filter composed of dual-layers including a nanofiber layer[J]. Aerosol Science and Technology, 2009,43(12):1174-1183.
doi: 10.1080/02786820903261086
[1] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[2] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[3] 刘朝军, 刘俊杰, 丁伊可, 张建青, 黄禄英. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(06): 133-141.
[4] 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7.
[5] 朱金铭 钱建华 曹晨 曹原. 聚醚砜非织造布复合膜的空气过滤性能[J]. 纺织学报, 2018, 39(07): 55-62.
[6] 王迎 杨云 魏春艳 宋欢 季英超 孙玉雍 张欣. 沉积静电纺聚丙烯腈纳米纤维膜窗纱的制备及其性能[J]. 纺织学报, 2018, 39(04): 14-18.
[7] 冯雪 汪滨 王娇娜 李从举. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(04): 6-11.
[8] 赵伟伟 汪滨 王娇娜 裴广玲 李从举. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(03): 6-12.
[9] 王哲 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35(11): 6-0.
[10] 陈钢进;肖慧明;王耀翔. 聚丙烯非织造布的驻极体电荷存储特性和稳定性[J]. 纺织学报, 2007, 28(9): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!