纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 144-151.doi: 10.13475/j.fzxb.20231103601

• 染整工程 • 上一篇    下一篇

镍/铜/镍-碳纳米管复合纱线的制备及其性能

赵方1,2, 邵光伟1,2(), 邵慧奇1,3, 毕思伊1,2, 李明昊1,2, 海文清1,2, 张鑫1,2, 姜子洋1,2, 蒋金华1,2, 陈南梁1,2   

  1. 1.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    2.东华大学 纺织学院, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2023-11-16 修回日期:2024-04-11 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 邵光伟(1987—),男,讲师,博士。主要研究方向为高性能纤维特种编织与产业用纺织品。E-mail:shaogw@dhu.edu.cn
  • 作者简介:赵方(1999—),女,硕士生。主要研究方向为纺织复合材料。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(22D128102/007)

Preparation and properties of Ni/Cu/Ni-carbon nanotube composite yarns

ZHAO Fang1,2, SHAO Guangwei1,2(), SHAO Huiqi1,3, BI Siyi1,2, LI Minghao1,2, HAI Wenqing1,2, ZHANG Xin1,2, JIANG Ziyang1,2, JIANG Jinhua1,2, CHEN Nanliang1,2   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620,China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. Innovation Center forTextile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2023-11-16 Revised:2024-04-11 Published:2024-12-15 Online:2024-12-31

摘要:

为制备轻质高强高电导率材料,以碳纳米管(CNT)纱线为原料,通过化学沉积和电沉积技术制备了镍/铜/镍-碳纳米管(Ni/Cu/Ni-CNT)复合纱线,确定最优电沉积铜工艺,并系统分析复合纱线的形貌、力学性能及电学性能,通过模拟织针编织过程,对比复合纱线摩擦前后的性能,研究了镍界面层对复合纱线结构和性能的影响。结果表明:最优工艺制得的Ni/Cu/Ni-CNT复合纱线表面均匀细致、性能优异;与原始CNT纱线相比,在断裂强度基本保持不变(90%)的情况下,复合材料电导率提高了44倍;镍界面层能够有效增强Cu镀层的结合牢度,Ni/Cu/Ni-CNT复合纱线在100次模拟编织后仅有微米级裂痕,断裂强度和电导率分别保持91%和62%。

关键词: 复合纱线, 导电材料, 碳纳米管, 表面金属化, 界面增强, 可编织性, 电学性能

Abstract:

Objective Metallized carbon nanotube (CNT) yarns are prepared and studied, which require the use of precious metals or complex processes to achieve satisfactory surface topography, resulting in high production costs. However, the mechanical properties of the metallized CNT yarns significantly are decreased while achieving the improved electrical conductivity. Therefore, it is necessary to find solutions that will enable metallized CNT yarns to have both satisfactory mechanical and electrical properties at low-cost.

Method This paper employed chemical deposition and electrochemical deposition methods to deposit metals on the surface of CNT yarns. Nickel served as the interface layer and oxidation-resistant layer in the metallized CNT composite yarns, while copper acted as the conductive layer. By adjusting the process parameters, controlling the process flow and adjusting the structure of the composite yarns, we successfully prepared high-performance Ni/Cu/Ni-CNT composite yarns. This paper conducted tests and characterizations on the mechanical, electrical, and processing properties of the composite yarns and discussed the influence of the nickel interface layer on the mechanical and electrical properties of the composite yarns.

Results The optimal electrochemical deposition was carried out at 5 mA/cm2 for 180 min. The surface of the original CNT yarns exhibited prominent grooves, and the yarn surface was covered with metal, resulting in a significant reduction in the grooves after metal deposition. In the absence of a nickel interface layer, the surface of the composite yarn showed visible metal particles, with some copper loosely adsorbed onto the CNT yarns in the form of loose particles, leading to a rough and porous coating. However, with the presence of a nickel interface layer, the surface coating of the composite yarns became uniform and refined. The Ni/Cu/Ni-CNT composite yarns demonstrated a thicker coating compared to the Ni/Cu-CNT composite yarns without the nickel interface layer. However, the decrease in tensile strength of the Ni/Cu/Ni-CNT composite yarns was smaller than that of the Ni/Cu-CNT composite yarns, with an improved elongation at break. These findings indicate that the porous structure causes stress concentration, weakening the overall load-bearing capacity of the composite yarns and resulting in the deterioration of its mechanical properties. The nickel interface layer was introduced before the copper plating forms a robust CNT-Cu interface, for the purposes of enhancing the load efficiency between the CNT yarns and copper, improving the quality of the copper-plated layer, and creating tightly structured composite yarns with staisfactory mechanical properties. After copper plating, the electrical conductivity of the CNT yarns was significantly improved, with the Ni/Cu/Ni-CNT composite yarns exhibiting the best conductivity, which is 44 times higher than the original CNT yarns and 1.4 times higher than the Ni/Cu-CNT composite yarns. After 100 friction cycles, the surface of the Ni/Cu-CNT composite yarns suffered severe damage, with needle hook friction causing noticeable fractures in the metal coating. By contrast, the Ni/Cu/Ni-CNT composite yarns only exhibited micron-level cracks on the surface while maintaining a good surface topography. This indicates that the nickel interface layer significantly improves the wear resistance and knittability over the CNT/Cu composite yarns. After simulating 100 knitting cycles, the tensile strength of the composite yarns was slightly decreased, while the elongation at break got higher. The conductivity loss of the Ni/Cu-CNT composite yarns was 46%, while the Ni/Cu/Ni-CNT composite yarns showed a conductivity loss of 38%. Nonetheless, the conductivity loss was still 28 times higher than that of the original CNT yarns. Even after 100 friction cycles, the electrical conductivity of the composite yarns remained satisfactory.

Conclusion The Ni/Cu/Ni-CNT composite yarns prepared by chemical deposition and optimal electrochemical deposition exhibit excellent morphology, mechanical properties, and electrical properties. The surface coating of the Ni/Cu/Ni-CNT composite yarns is uniform and refined. Compared to the original CNT yarns, the Ni/Cu/Ni-CNT composite yarns show a 44-fold improvement in electrical performance while maintaining 90% of its tensile strength. The Ni/Cu/Ni-CNT composite yarns also demonstrate outstanding wear resistance and knittability. The nickel interface layer effectively enhances the adhesion of the copper-plated layer to the surface of the CNT yarns. After 100 friction cycles, only micron-level discontinuous cracks are observed on the yarn surface, and the tensile strength and electrical conductivity are maintained at 91% and 62%, respectively.

Key words: composite yarn, conductive material, carbon nanotube, surface metallization, interface enhancement, knittability, electrical property

中图分类号: 

  • TS102.6

图1

Ni/Cu/Ni-CNT复合纱线的制备流程示意图"

图2

Ni/Cu/Ni-CNT复合纱线的表面形貌照片(×300)"

图3

Ni/Cu/Ni-CNT复合纱线的直径"

图4

Ni/Cu/Ni-CNT复合纱线的电学性能"

图5

原始碳纳米管纱线和金属化碳纳米管纱线的表面形貌照片"

图6

原始碳纳米管纱线和金属化碳纳米管纱线的截面形貌照片(×500)"

图7

原始CNT纱线和金属化CNT纱线的力学性能与电学性能"

图8

模拟上机编织仪"

图9

CNT/Cu复合纱线在100次摩擦后的表面形貌(×200)"

图10

原始CNT纱线和金属化CNT纱线100次模拟编织前后的拉伸性能"

图11

CNT/Cu复合纱线摩擦前后的电导率"

[1] 马珮珮, 李龙, 吴磊. 导电纱线的制备及其在智能可穿戴装置中的应用研究进展[J]. 材料工程, 2021, 49(10): 31-42.
MA Peipei, LI Long, WU Lei. Research progress in preparation of conductive yarn and its application in smart wearable devices[J]. Journal of Materials Engineering, 2021, 49(10): 31-42.
[2] SUNDARAM R M, SEKIGUCHI A, SEKIYA M, et al. Copper/carbon nanotube composites: research trends and outlook[J]. Royal Society Open Science, 2018.DOI:10.1098/rsos.180814.
[3] BAI Y X, ZHANG R F, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nature Nanotechnology, 2018, 13(7): 589-595.
[4] LI Q W, LI Y, ZHANG X F, et al. Structure-dependent electrical properties of carbon nanotube fibers[J]. Advanced Materials, 2007, 19(20): 3358-3363.
[5] LEKAWA-RAUS A, PATMORE J, KURZEPA L, et al. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring[J]. Advanced Functional Materials, 2014, 24(24): 3661-3682.
[6] 宋启良, 胡振峰, 杜晓坤, 等. 非金属表面化学镀覆的研究现状[J]. 电镀与涂饰, 2019, 38(3): 125-131.
SONG Qiliang, HU Zhenfeng, DU Xiaokun, et al. Research progress in preparation of conductive yarn and its application in smart wearable devices[J]. Electropating & Finishing, 2019, 38(3): 125-131.
[7] LEGGIERO A P, DRIESS S D, LOUGHRAN E D, et al. Platinum nanometal interconnection of copper-carbon nanotube hybrid electrical conductors[J]. Carbon, 2020, 168: 290-301.
[8] LEGGIERO A P, TRETTNER K J, URSINO H L, et al. High conductivity copper-carbon nanotube hybrids via site-specific chemical vapor deposition[J]. ACS Applied Nano Materials, 2019, 2(1): 118-126.
[9] TRAN T Q, LEE J K Y, CHINNAPPAN A, et al. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods[J]. Journal of Materials Science & Technology, 2020, 40: 99-106.
[10] 赵超锋, 郑小燕, 李凯瑞, 等. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, et al. Surface metallization of carbon nanotube film for flexible lithium-ion batteries with high output current[J]. Chinese Journal of Materials Research, 2022, 36(5): 373-380.
[11] LIU Y, HU Q Q, CAO Y, et al. High-performance ultrabroadband photodetector based on photother-moelectric effect[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29077-29086.
[12] PARK J S, PARK J Y, LEE K, et al. Large-scalable, ultrastable thin films for electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2023, 11(34): 18188-18194.
[13] 席佳琦, 戴亚光, 夏雷, 等. 轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能[J]. 复合材料学报, 2024, 41(1): 196-206.
XI Jiaqi, DAI Yaguang, XIA Lei, et al. Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 196-206.
[14] SHI Y Y, LIAO S Y, WANG Q F, et al. Enhancing the interaction of carbon nanotubes by metal-organic decomposition with improved mechanical strength and ultra-broadband EMI shielding performance[J]. Nano-Micro Letters, 2024, 16(1): 134.
[15] XU G, ZHAO J N, LI S, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers[J]. Nanoscale, 2011, 3(10): 4215-4219.
[16] HANNULA P M, JUNNILA M, JANAS D, et al. Carbon nanotube fiber pretreatments for electrodeposition of copper[J]. Advances in Materials Science and Engineering, 2018.DOI:10.1155/2018/3071913.
[17] KIM B J, BAE K M, LEE Y S, et al. EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites[J]. Surface & Coatings Technology, 2014, 242: 125-131.
[18] ZHANG D H, ZHANG Y H, MIAO M H. Metallic conductivity transition of carbon nanotube yarns coated with silver particles[J]. Nanotechnology, 2014. DOI:10.1088/0957-4484/25/27/275702.
[19] 邵怡沁. 碳纳米管纱线复合材料界面力学及应变传感性能研究[D]. 上海: 东华大学, 2019: 25-28.
SHAO Yiqin. Interfacial properties and strain sensing performance of carbon nanotube yarn reinforced composites[D]. Shanghai: Donghua University, 2019: 25-28.
[20] 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
FAN Tongxiang, LIU Yue, YANG Kunming, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites[J]. Acta Metallurgica Sinica, 2019, 55(1): 16-32.
[21] 吴昆杰, 张永毅, 勇振中, 等. 碳纳米管纤维的连续制备及高性能化[J]. 物理化学学报, 2022, 38(9): 80-104.
WU Kunjie, ZHANG Yongyi, YONG Zhenzhong, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers[J]. Acta Physico-Chimica Sinica, 2022, 38(9): 80-104.
[22] ZOU J Y, LIU D D, ZHAO J N, et al. Ni nanobuffer layer provides light-weight CNT/Cu fibers with superior robustness, conductivity, and ampacity[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8197-8204.
[23] RHO H, PARK M, PARK M, et al. Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density[J]. NPG Asia Materials, 2018, 10: 146-155.
[1] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[2] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[3] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[4] 宋功吉, 王煜煜, 王善龙, 王建南, 许建梅. 碳纳米管掺杂高聚物制备人工神经导管的研究进展[J]. 纺织学报, 2023, 44(11): 232-239.
[5] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[6] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[7] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[8] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[9] 李建娜, 陈玺, 邵慧奇, 邵光伟, 蒋金华, 陈南梁. 动态力学载荷对超细镀金钼丝力学与电学性能的影响[J]. 纺织学报, 2022, 43(10): 45-52.
[10] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[11] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[12] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[13] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[14] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[15] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!