纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 196-206.doi: 10.13475/j.fzxb.20231202101

• 机械与设备 • 上一篇    下一篇

基于响应面法的辅助喷嘴喷孔结构优化设计

沈敏1, 杨启2, 胡峰2, 王真2, 杨学正3, 吕永法3, 余联庆1,2()   

  1. 1.武汉纺织大学 三维纺织湖北省工程研究中心, 湖北 武汉 430200
    2.武汉纺织大学 机械工程与自动化学院, 湖北 武汉 430200
    3.日发纺织机械有限公司, 山东 聊城 252001
  • 收稿日期:2023-12-14 修回日期:2024-05-10 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 余联庆(1972—),男,教授,博士。主要研究方向为新型纺织机械。E-mail:2006110@wtu.edu.cn
  • 作者简介:沈敏(1978—),女,博士。主要研究方向为高性能纺织机器。
  • 基金资助:
    国家自然科学基金项目(51505344);国家自然科学基金项目(11872048);山东省重点研发项目(2024CXGC010215);湖北省高等学校优秀中青年科技创新团队项目(T2022015);湖北省数字化纺织装备重点实验室开放课题(2020001)

Optimization design of nozzle orifice structure based on response surface method

SHEN Min1, YANG Qi2, HU Feng2, WANG Zhen2, YANG Xuezheng3, LÜ Yongfa3, YU Lianqing1,2()   

  1. 1. Three-dimensional Textile Hubei Engineering Research Center, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Mechanical and Automation, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Shandong Rifa Textile Machinery Co., Ltd., Liaocheng, Shandong 252001, China
  • Received:2023-12-14 Revised:2024-05-10 Published:2025-03-15 Online:2025-04-16

摘要: 为降低辅助喷嘴的耗气量,建立不同椭圆形孔出口的辅助喷嘴与异形筘组成的流场,采用Fluent数值模拟得到沿合成流场中心轴线的气流速度与辅助喷嘴入口质量流;基于合成气流速度与辅助喷嘴射流集束型分析,设置椭圆孔参数范围,依据Box-Behnken设计试验,得到耗气量定量表达式,结合响应面方法分析辅助喷嘴椭圆孔结构参数对耗气量的影响。结果表明:改变椭圆孔在出口平面的旋转角度,对合成气流沿轴线速度和辅助喷嘴射流的径向速度影响显著;椭圆孔短轴长度对耗气量的影响显著于长轴长度,旋转角度的改变对耗气量的影响较小;辅助喷嘴耗气量与合成流场中心轴线波峰速度呈现非线性关系,最优模型相对试验组平均数值,合成气流波峰速度提升了2.25%,耗气量降低了7.35%。

关键词: 喷气织机, 辅助喷嘴, 喷孔结构, 响应曲面法, 耗气量

Abstract:

Objective The air consumption of the auxiliary nozzle accounts for approximately 75% of the air-jet loom. In order to address the issues of low jet velocity and high air consumption in the single circular-hole auxiliary nozzle, a novel-shaped orifice auxiliary nozzle was designed. The study investigated the influence of the outlet shape parameters of the auxiliary nozzle on the synthesized airflow within the novel-shaped reed groove. This paper reports on numerical simulations based on the Reynolds-Averaged Navier-Stokes (RANS) equations and a turbulent model for vortex viscosity, focusing on the three-dimensional synthesized flow field composed of the main nozzle jet and the auxiliary nozzle jet.

Method Firstly, three-dimensional synthesized flow field models for auxiliary nozzles A1, A2, A3, B1,B2 and B3 were established using Solidworks software. The synthetic flow field models were then grid-divided using specialized meshing software ICEM, and boundary condition parameters were set using computational fluid dynamics (CFD) software Fluent. Numerical simulations of the synthesized airflow were conducted based on the RANS equations, and the accuracy of the numerical results was validated through experiments. Secondly, building upon the analysis of experimental results, the range of outlet parameters for the auxiliary nozzles was defined, including the long axis, short axis, and rotation angle. Experimental combinations were generated using the Box-Behnken method, and calculations were performed using Fluent. Experimental results were presented as response surfaces, and regression equations were derived, with the accuracy of the regression equation verified through variance analysis. By analyzing the interactions between various factors, the impact of each factor on air consumption and speed was determined. In conclusion, a comparison of air consumption and average velocity among the experimental groups facilitated the identification of the optimal comprehensive performance model.

Results The numerical simulation results exhibit a decay trend in the airflow velocity curve that aligns with the experimental test results. The velocity of the primary jet rapidly decreases upon entry into the novel-shaped reed groove. When the auxiliary nozzle jet enters the reed groove, the synthesized airflow gets accelerated briefly, temporarily slowing down the overall decay of the synthesized airflow. The prioritization of the converging type of auxiliary nozzle is observed in the order of A1 > A2 > A3 and B3>B2>B1. The F-value of the response surface model for air consumption of the auxiliary nozzle under 0.3 MPa is 249.89, with a P-value smaller than 0.000 1, indicating the rationality of the selected model parameters. The results that R2=0.997 3, Adjusted R-squared (Radj2)=0.993 3, CV=1.14%<10%, and Adeq precision =56.082 8>4, indicating that the fitted regression equation conforms to the experimental principle and can be used for the analysis and prediction of air consumption. The F-value of the response surface model for velocity of the auxiliary nozzle under 0.4 MPa is 66.55, with a P-value smaller than 0.000 1, indicating the rationality of the selected model parameters. The results that R2=0.990 1, Radj2=0.975 2, CV=1.58%<10%, and Adeq precision =33.092 6>4, suggest that the fitted regression equation conforms to the experimental principle and can be used for the analysis and prediction of velocity. Through interaction analysis, it is observed that air consumption and velocity are positively correlated with the long and short axes, while the influence of the rotation angle on air consumption is relatively minimal, but the interaction between the rotation angle and the short axis has a significant effect on the velocity. Finally, compared with the average of the experimental group, the air consumption of the optimized model is reduced by 7.35%, and the average speed is increased by 2.25%.

Conclusion 1) The gas supply pressure of the elliptical hole auxiliary jet inlet is increased from 0.3 MPa to 0.4 MPa, and the air consumption of the elliptical hole auxiliary nozzle will be significantly increased. However, the distribution pattern of the response surface of the interaction of factors affecting air consumption is basically consistent. 2) The short axis of the elliptical hole has the most significant effect on the air consumption, followed by the long axis, while the change of rotation angle has no effect on the air consumption, and the interaction between the long axis and the short axis has the most significant effect on the air consumption. 3) The degree of influence on the peak value of the resultant air velocity is as follows: short axis > long axis > rotation angle, and the interaction of long axis-short axis and short axis-rotation angle on the velocity is significant; changing the rotation direction of the long axis of the elliptic hole has a significant effect on the resultant flow velocity. 4) A nonlinear relationship exists between the gas consumption of the auxiliary injection with elliptical holes and the peak velocity of the synthetic gas axis, and the gas consumption decreases when the speed increases.

Key words: air jet loom, auxiliary nozzle, spray hole, response surface methodology, air consumption

中图分类号: 

  • TS103.3

图1

椭圆孔辅助喷嘴结构参数"

图2

多个辅助喷嘴与异形筘组合三维模型"

图3

主、辅助喷嘴射流三维流场网格划分图"

图4

主、辅助喷嘴射流汇入异形筘道内气流测速原理"

图5

异形筘道内合成气流速度测量装置"

图6

数值模拟与实验得到合成气流沿轴向速度"

图7

沿辅助喷嘴出口轴线不同距离的速度云图"

表1

Box-Behnken试验设计因素水平"

水平 A
长轴长度/mm
B
短轴长度/mm
C
旋转角度/rad
-1 2.0 1.0 0
0 2.2 1.2 0.393
1 2.4 1.4 0.785

表2

响应面试验设计与结果"

试验
序号
响应变量 响应值
长轴长
度/mm
短轴长
度/mm
旋转
角度/
rad
H1:0.3MPa
耗气量/
(kg·h-1)
H2:0.4MPa
耗气量/
(kg·h-1)
1 2.0 1.0 0.393 10.41 13.29
2 2.2 1.0 0 11.32 14.53
3 2.2 1.0 0.785 11.52 14.60
4 2.4 1.0 0.393 12.47 15.77
5 2.0 1.2 0.785 12.56 15.74
6 2.0 1.2 0 12.61 15.99
7 2.2 1.2 0.393 13.46 17.49
8 2.2 1.2 0.393 13.47 17.49
9 2.2 1.2 0.393 13.48 17.46
10 2.2 1.2 0.393 13.72 17.42
11 2.4 1.2 0.785 14.52 18.81
12 2.4 1.2 0 14.61 18.43
13 2.0 1.4 0.393 14.83 18.87
14 2.2 1.4 0 16.14 20.55
15 2.2 1.4 0.785 16.17 20.78
16 2.4 1.4 0.393 17.54 22.35

表3

0.3 MPa下耗气量回归方程的方差分析"

来源 平方和 自由度 均方和 F P 显著性
模型 54.82 9 6.09 249.89 <0.000 1 **
A 9.53 1 9.53 390.81 <0.000 1 **
B 44.94 1 44.94 1 843.39 <0.000 1 **
C 0.001 0 1 0.001 0 0.041 5 0.845 2
AB 0.105 6 1 0.105 6 4.330 0 0.082 6
AC 0.000 4 1 0.000 4 0.016 0 0.903 5
BC 0.007 2 1 0.007 2 0.296 3 0.605 8
A2 0.004 6 1 0.004 6 0.186 9 0.680 6
B2 0.242 6 1 0.242 6 9.950 0 0.019 7 *
C2 0.000 3 1 0.000 3 0.012 6 0.914 3
残差 0.146 3 6 0.024 4
失拟项 0.099 2 3 0.033 1 2.11 0.278 1 不显著

图8

0.3 MPa下影响耗气量因素间交互响应曲面图"

图9

0.3 MPa下影响耗气量因素间交互响应平面图"

图10

0.4 MPa下影响耗气量因素间交互响应曲面图"

表4

0.4 MPa时速度响应面试验设计与结果"

实验
序号
响应变量 响应结果
A长轴
长度/mm
B
短轴
长度/mm
C
旋转角度/
rad
V
速度/(m·s-1)
1 2.0 1.0 0.393 63.15
2 2.2 1.0 0 65.66
3 2.2 1.0 0.785 59.01
4 2.4 1.0 0.393 68.86
5 2.0 1.2 0.785 64.50
6 2.0 1.2 0 63.80
7 2.2 1.2 0.393 71.55
8 2.2 1.2 0.393 71.55
9 2.2 1.2 0.393 69.48
10 2.2 1.2 0.393 73.26
11 2.4 1.2 0.785 73.35
12 2.4 1.2 0 74.20
13 2.0 1.4 0.393 74.06
14 2.2 1.4 0 73.31
15 2.2 1.4 0.785 80.31
16 2.4 1.4 0.393 88.29

表5

回归方程方差分析"

来源 平方和 自由度 均方和 F P 显著性
模型 749 9 83.22 66.55 <0.000 1 **
A 192 1 192 153.54 <0.000 1 **
B 439.15 1 439.15 351.17 <0.000 1 **
C 0.005 1 0.005 0.004 0.951 6
AB 18.15 1 18.15 14.51 0.008 9 **
AC 0.600 3 1 0.600 3 0.48 0.514 3
BC 46.59 1 46.59 37.25 0.000 9 **
A2 2.31 1 2.31 1.85 0.222 9
B2 7.51 1 7.51 6 0.049 8 *
C2 42.44 1 42.44 33.94 0.001 1 **
残差 7.5 6 1.25
失拟项 0.326 6 3 0.108 9 0.045 5 0.984 8 不显著

图11

0.4 MPa下影响速度因素间交互响应曲面图"

图12

0.4 MPa下影响速度因素间交互响应平面图"

图13

波峰速度与耗气量的关系"

[1] 李雪清. 我国纺机专用基础件行业现状与发展[J]. 纺织器材, 2023, 50(1):2-8.
LI Xueqing. Current situation and development of Chinese textile essential parts[J]. Textile Accessories, 2023, 50(1): 2-8.
[2] 祝成炎, 田伟, 李艳清, 等. 喷气织造技术现状与发展[J]. 棉纺织技术, 2023, 51(10):97-104.
ZHU Chengyan, TIAN Wei, Ll Yanqing, et al. Present situation and development of air-jet weaving techno-logy[J]. Cotton Textile Technology, 2023, 51(10):97-104.
[3] 殷俊清, 陈子韩, 陈永当, 等. 片式多源喷气引纬技术研究[J]. 丝绸, 2023, 60(5):66-73.
YIN Junqing, CHEN Zihan, CHEN Yongdang, et al. Research on sheet-type multi-source jet weft insertion technology[J]. Journal of Silk, 2023, 60(5):66-73.
[4] 陈巧兰, 王鸿博, 高卫东, 等. 喷气织机单圆孔辅助喷嘴结构优化[J]. 纺织学报, 2016, 37(1):142-146.
CHEN Qiaolan, WANG Hongbo, GAO Weidong, et al. Structure optimization of single circular hole auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2016, 37(1):142-146.
[5] 谭保辉, 冯志华, 刘丁丁, 等. 基于CFD的喷气织机辅助喷嘴流场分析[J]. 纺织学报, 2012, 33(7):125-130.
TAN Baohui, FENG Zhihua, LIU Dingding, et al. Flow field analysis of auxiliary nozzle of air-jet loom based on CFD[J]. Journal of Textile Research, 2012, 33(7):125-130.
[6] 王卫华, 冯志华, 谭保辉, 等. 喷气织机辅助喷嘴流场特性分析与纬纱牵引实验研究[J]. 纺织学报, 2014, 35(10): 121-128.
WANG Weihua, FENG Zhihua, TAN Baohui, et al. Analysis of flow field characteristics of auxiliary nozzle of air-jet loom and experimental study on weft pulling[J]. Journal of Textile Research, 2014, 35(10):121-128.
[7] 陈巧兰, 王鸿博, 高卫东, 等. 喷气织机辅助喷嘴喷孔形状的优化设计[J]. 上海纺织科技, 2016, 44(7):14-16.
CHEN Qiaolan, WANG Hongbo, GAO Weidong, et al. Optimization design of hole shapeof auxiliary nozzle on air-jet loom[J]. Shanghai Textile Science & Technology, 2016, 44(7):14-16.
[8] JIANG Shunwei, JIN Yuzhen, HU Xiaodong, et al. Characteristics of intersecting airflows in the narrow flow channel[J], The Journal of The Textile Institute, 2018, 109(4):517-523.
[9] WEI Mengyuan, XUE Wenliang, LU Weimin, et al. Air velocity fluctuation in reedgroove of air-jet loom[J]. Journal of Donghua University, 2011, 28(2): 170-176.
[10] 陆庆, 冯志华, 张荣, 等. 主辅喷嘴供气压力对筘槽内引纬气流速度的影响[J]. 科学技术与工程, 2017, 17(7):95-100,118.
LU Qing, FENG Zhihua, ZHANG Rong, et al. Influence of air supply pressure of the main and auxiliary nozzles on the air flow velocity in the shed triangle of weft insertion[J]. Science Technology and Engineering, 2017, 17(7): 95-100,118.
[11] 杨国仲, 沈丹峰, 常革联, 等. 喷气织机异形筘结构参数对引纬气流场的影响[J]. 西安工程大学学报, 2020, 34(2):85-90.
YANG Guozhong, SHEN Danfeng, CHANG Gelian, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on Fluent[J]. Journal of Xi'an Polytechnic University, 2020, 34(2): 85-90.
[12] 周浩邦, 沈敏, 余联庆, 等. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
doi: 10.13475/j.fzxb.20200502308
ZHOU Haobang, SHEN Min, YU Lianqing, et al. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom[J]. Journal of Textile Research, 2021, 42(11):166-172.
doi: 10.13475/j.fzxb.20200502308
[13] 张敏, 王鸿博, 高卫东, 等. 喷气织机辅助喷嘴流场特性与耗气量分析[J]. 纺织学报, 2016, 37(12):123-128.
ZHANG Min, WANG Hongbo, GAO Weidong, et al. Analysis on weft insertion flow field and gas consumption of auxiliary nozzle in air-jet loom[J]. Journal of Textile Research, 2016, 37(12):123-128.
[14] 张振全, 曹铭成, 王顺利, 等. 丰田喷气织机节能降耗的实践[J]. 纺织器材, 2021, 48(5):43-47.
ZHANG Zhenquan, CAO Mingcheng, WANG Shunli, et al. Practice of energy saving and consumption reducing in Toyota air-jet loom[J]. Textile Accessoires, 2021, 48(5): 43-47.
[15] 樊百林, 张昌睿, 郭佳华, 等. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44 (6):200-206.
FAN Bailin, ZHANG Changrui, GUO Jiahua, et al. Nozzle structure optimization based on flow simulation for air-jet weaving[J]. Journal of Textile Research, 2023, 44(6):200-206.
[16] 张亮, 冯志华, 刘帅, 等. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(6):112-117.
ZHANG Liang, FENG Zhihua, LIU Shuai, et al. Structure optimization design of auxiliary nozzle for air-jet loom[J]. Journal of Textile Research, 2016, 37(6):112-117.
[17] 马建鑫, 陈永当, 程云飞, 等. 喷孔锥度对喷气织机环槽型辅助喷嘴性能的影响[J]. 轻工机械, 2023, 41(2):42-47.
MA Jianxin, CHEN Yongdang, CHENG Yunfei, et al. Influence of nozzle taper on performance of annular groove auxiliary nozzle of air-jet loom[J]. Light Industry Machinery, 2023, 41(2):42-47.
[18] 赫森奥, 陈昊思, 肖福礼, 等. 喷气织机辅助喷嘴的气流场仿真[J]. 装备制造技术, 2024(1):7-9,36.
HE Senao, Chen Haosi, Xiao Fuli, et al. Airflow field simulation of an air-jet loom-assisted nozzle[J]. Equipment Manufacturing Technology, 2024(1):7-9,36.
[19] 鲍宏, 杨靖, 柯庆镝, 等. 基于支持向量回归的熔丝制造3D打印能效优化模型[J]. 中国机械工程, 2022, 33(18):2215-2226.
BAO Hong, YANG Jing, KE Qingdi, et al. An energy efficiency optimization model of fused filament fabrication 3D printing based on support vector regression[J]. CHINA Mechanical Engineering, 2022, 33(18):2215-2226.
doi: 10.3969/j.issn.1004-132X.2022.18.008
[20] KETEMA M Y, AYELE M. Effect of cotton/polyester blend ratio, loom speed, and air pressure on yarn twist loss and yarn strength loss: the case of air-jet loom[J]. Journal of Natural Fibers, 2023, 20(1):1-8.
[1] 沈敏, 欧阳灿, 熊小双, 王真, 杨学正, 吕永法, 余联庆. 基于射流瞬态流速变分模态分解法的纬纱波动幅度预测[J]. 纺织学报, 2025, 46(01): 187-196.
[2] 奚传智, 王家源, 王泳智, 陈革, 裴泽光. 低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验[J]. 纺织学报, 2024, 45(12): 206-214.
[3] 方敬兵, 沈敏, 李俊祥, 王真, 余联庆. 纤维束与异形筘内合成气流的相互耦合作用[J]. 纺织学报, 2024, 45(03): 194-201.
[4] 肖世超, 沈敏, 方敬兵, 王真, 余联庆. 主喷嘴与高速异形孔辅助喷嘴引纬合成流场特性[J]. 纺织学报, 2023, 44(12): 181-188.
[5] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[6] 陈弈菲, 刘驰, 杨萌. 基于响应曲面分析的连体泳装结构情绪测量[J]. 纺织学报, 2022, 43(10): 161-168.
[7] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[8] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[9] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[10] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[11] 颜苏芊 王力平. 喷气织机中压缩空气的泄漏评估及其修复优化[J]. 纺织学报, 2018, 39(04): 130-136.
[12] 吴龙. 应用响应面优化法的文胸泡沫模杯模压厚度变化趋势研究[J]. 纺织学报, 2017, 38(11): 102-109.
[13] 李婧 余媛 朱亚楠 葛明桥. 应用响应曲面法的夜光机绣织物余辉亮度模型的建立[J]. 纺织学报, 2017, 38(09): 72-75.
[14] 韩要宾 张杰 高卫东 潘如如 张宁. 基于生产实践的喷气织机主喷嘴气压优选[J]. 纺织学报, 2017, 38(01): 126-131.
[15] 张敏 王鸿博 高卫东 陈巧兰. 喷气织机辅助喷嘴流场特性与耗气量分析[J]. 纺织学报, 2016, 37(12): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!