纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 245-255.doi: 10.13475/j.fzxb.20240402502

• 综合述评 • 上一篇    下一篇

连续玄武岩纤维专用浸润剂体系的研究进展

孙靖宇1, 张建伟1,2, 杨超3, 佘希林1(), 刘嘉麒1,2   

  1. 1.青岛大学 环境科学与工程学院, 山东 青岛 266071
    2.青岛大学 玄武岩纤维生态应用研究院, 山东 青岛 266071
    3.青岛大学 材料科学与工程学院, 山东 青岛 266071
  • 收稿日期:2024-04-10 修回日期:2024-11-12 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 佘希林(1974—),男,教授,博士。主要研究方向为环境功能材料。E-mail:xlshe@qdu.edu.cn
  • 作者简介:孙靖宇(2000—),男,硕士。主要研究方向为玄武岩纤维。

Research progress in sizing agent systems for continuous basalt fibers

SUN Jingyu1, ZHANG Jianwei1,2, YANG Chao3, SHE Xilin1(), LIU Jiaqi1,2   

  1. 1. Schoo of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Basalt Fiber in Eco-Application, Qingdao University, Qingdao, Shandong 266071, China
    3. College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2024-04-10 Revised:2024-11-12 Published:2025-03-15 Online:2025-04-16

摘要:

针对玄武岩纤维专用浸润剂研发不足的问题,围绕目前已经或有望用于玄武岩纤维上浆的5种主要浸润剂体系,即环氧树脂、聚氨酯、环氧树脂/聚氨酯、硅烷或改性硅烷、有机/无机复合体系,根据体系中的主要成分成膜剂的不同,综述和对比了浸润剂、玄武岩纤维和基体之间的界面相互作用以及复合材料的性能,总结了各体系的优势和存在的问题;此外,介绍了以淀粉-磷酸盐体系、聚丙烯、离子液体为代表的新兴浸润剂体系。最后,探讨了连续玄武岩纤维专用浸润剂的设计原则,提出连续玄武岩纤维浸润剂体系的研究目前亟待解决的关于研究体量和成果转化的2大问题及其未来发展的前景,以期为玄武岩纤维应用领域的拓展和深化提供一定的参考。

关键词: 玄武岩纤维, 专用浸润剂, 环氧树脂, 聚氨酯, 环氧/聚氨酯, 硅烷或改性硅烷, 成膜剂

Abstract:

Significance Basalt fibers (BFs) exhibit excellent mechanical properties, high temperature resistance, corrosion resistance, environmental friendliness, and low cost, which have been widely used in the engineering field, and the performance is mainly affected by the fiber composition structure and the sizing agent system. For basalt with defined composition, the sizing agent not only avoids defects and damages of BFs in the process of being stretched but also improves the compatibility of fiber and resin. The current sizing agent systems for BFs are the same as those used for glass fibers (GFs) or carbon fibers (CFs). Although the composition of BFs is similar with glass fibers in some degree, BFs are different and special from GFs and CFs, and therefore it is crucial to develop a special sizing agent system for BFs.

Progress Five main sizing agent systems which are epoxy resin (EP), polyurethane (PU), epoxy/polyurethane, silane or modified silane, organic/inorganic composite system, used for continuous BFs are reviewed. According to the different main components of the film forming agent in the sizing agent system, the interfacial interaction between the sizing agent, BFs and the matrix and the performance of the composite material are summarized by systematic and comparative methods. Epoxy sizing has become the main sizing agent by virtue of its low cost, excellent performance and easy usage. Self-emulsification technology is the key technology of EP sizing. However, epoxy resin is brittle after curing, so toughness polyurethane emulsion appears. Polyurethane slurry is only widely used in a few fields due to its poor mechanical properties and low solvent resistance. EP and PU composite sizing agent system can combine the advantages and overcome their disadvantages. The abundant reactive groups in the system, such as isocyanate groups, amino groups, and epoxy groups, can react with each other and further react with carboxyl and hydroxyl groups on the surface of pretreated BFs, and these properties provide high efficiency for EP/PU infiltration. All the above three systems have poor heat resistance, and the general method for increasing the heat resistance is partial cross-linking or increasing the molecular weight. Silane or modified silane sizing agent system can combine the two functions of coupling and film forming in one. Thank to the presence of silicon, it has better heat resistance than other systems. However, the surface energy of the organic film is low, so an organic/inorganic hybrid sizing system is prepared. This is a very promising system with excellent properties that combines mechanical interlocking and chemical bonding interactions between BFs and the matrix. Some new sizing agent systems are also introduced including the starch-phosphate, polypropylene and ionic liquid sizing systems, which are non-mainstream but with great potential.

Conclusion and Prospect Conclusively, the design principles, challenges and future development prospects of continuous BFs sizing agent systems are discussed so as to provide a certain reference for the expansion and deepening of BFs application fields. Actually, several general sizing agent systems of continuous BFs can be designed specifically for several types of matrixes, such as plastics, including thermosetting and thermoplastic polymers, rubber, asphalt, and cement, and so on. This would allow BFs treated with sizing during fiber-drawing to be used directly without removal of the drawing sizing agent and re-modification before weaving or compositing. Further, although many fiber modification methods have shown excellent performance, these techniques are only in the laboratory and there is still a long way to go from laboratory to industrial production. In conclusion, there is great potential in the research on a special sizing agent system for continuous BFs although it is currently still in its early stage.

Key words: basalt fibers, special sizing agent, epoxy resin, polyurethane, epoxy resin/polyurethane, silane or modified silane, film forming agent

中图分类号: 

  • TQ343.4

图1

2010—2023年间在Web of Science数据库中公开发表相关文献数量"

图2

EP 浸润剂体系在复合材料中的应用"

图3

以 PU 为纤维浸润剂的复合材料界面示意图"

图4

EP与PU分别与纤维表面以及EP与PU之间的化学反应式"

图5

EP/PU复合体系的制备机制示意图"

图6

不同分子结构的硅烷增强效果"

图7

有机/无机杂化浸润剂体系中添加的纳米填料"

[1] KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, ELIZALDE-MARTÍNEZ I, et al. An overview of recent advances in micro/nano beads and microfibers research: critical assessment and promoting the less known[J]. Total Environ, 2020. DOI: 10.1016/j.scitotenv.2020.139991.
[2] COHEN N, RADIAN A. Microplastic textile fibers accumulate in sand and are potential sources of micro (nano) plastic pollution[J]. Environ Sci Technol, 2022, 56: 17635-17642.
[3] ROBERTSON I D, YOURDKHANI M, CENTELLAS P J, et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization[J]. Nature, 2018, 557: 223-227.
[4] SORRENTINO L, DE VASCONCELLOS D S, D'Auria M, et al. Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics[J]. Polym Compos, 2018, 39:2942-2951.
[5] ZHOU A, QIU Q W, CHOW C L, et al. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2020.105802.
[6] KHAN F M, SHAH A H, WANG S, et al. A comprehensive review on epoxy biocomposites based on natural fibers and bio-fillers: challenges, recent developments and applications[J]. Adv Fiber Mater, 2022(4): 683-704.
[7] LOU K K, KANG A H, XIAO P, et al. Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture[J]. Constr Build Mater, 2021.DOI:10.1016/j.conbuildmat.2020.121155.
[8] 骆春旭, 龚浩然, 吴敏勇, 等. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11):61-66.
doi: 10.13475/j.fzxb.20220706801
LUO C X, GONG H R, WU M Y, et al. Preparation and properties of special basalt sewing threads[J]. Journal of Textile Research, 2023, 44(11):61-66.
doi: 10.13475/j.fzxb.20220706801
[9] PUCCI M F, SEGHINI M C, LIOTIER P J, et al. Surface characterisation and wetting properties of single basalt fibres[J]. Composites Part B, 2017, 109: 72-81.
[10] GUTNIKOY S I, ZHUKOVSKAYA E S, POPOV S S, et al. Correlation of the chemical composition, structure and mechanical properties of basalt continuous fibers[J]. AIMS Materials Science, 2019, 5(6):806-820.
[11] XIE J, CHEN K, YAN M, et al. Effect of temperature and water penetration on the interfacial bond between epoxy resin and glass fiber: a molecular dynamics study[J]. Journal of Molecular Liquids, 2022. DOI: 10.1016/j.molliq.2021.118424.
[12] YAO Y, WANG M, WU H, et al. Synthesis of waterborne epoxy resin with diethanolamine assisted succinimide for improving the strand integrity of polyimide filament[J]. Journal of Industrial Textiles, 2022, 51: 8323-8337.
[13] FANG Q, YAO J, NIU K. Effect of molecular weight of self-emulsifying amphiphilic epoxy sizing emulsions on the carbon fibres and interfacial properties of their composites[J]. Polymers, 2020. DOI: 10.3390/polym12112439.
[14] LIU F Y, SHI Z, DONG Y B. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 337-345.
[15] SUN J L, YANG Q, QIU X Q, et al. Application and development of silane coupling agents in glass fiber composites[J]. Organosilicon Materials, 2022, 36(4):55-59.
[16] CHEN Z W, HUANG Y D. Preparation and performance of fumed silica-stabilized epoxy resin pickering emulsion for basalt fiber-sizing agents[J]. Adv Compos Hybrid Mater, 2021, 4:1205-1214.
[17] CHENG Z W, ZENG K M, CHEN J H. Preparation and characterization of transparent and UV-shielding epoxy/SR-494/APTMS/ZnO nanocomposites with high heat resistance and anti-static properties[J]. Journal of the Chinese Chemical Society, 2014, 61(3): 320-328.
[18] KORE S, THEODORE M, PILLAI R, et al. Improvement of interfacial adhesion of 25 unidirectional textile grade carbon fiber (TCF) with unsized, epoxy and urethane sizing reinforced in thermoset urethane composites[J]. Mater Today Commun, 2021. DOI: 10.1016/j.mtcomm.2021.102669.
[19] OZKAN C, GAMZE KN, AYTAC A, et al. Short carbon fiber reinforced polycarbonate composites: effects of different sizing materials[J]. Composites Part B, 2014, 62:230-235.
[20] 马龙. 一种以双酚A型环氧树脂乳液为成膜剂的玄武岩纤维浸润剂及其制备方法: 115140953A[P]. 2022-10-04.
MA Long. A basalt fiber infiltrant with bisphenol A type epoxy resin emulsion as film-forming agent and its preparation method: 115140953A[P]. 2022-10-04.
[21] 赖川. 一种增强型玄武岩纤维浸润剂及其制备方法:113480199A [P]. 2021-10-08.
LAI Chan. A reinforced basalt fiber infiltration agent and its preparation method, 113480199A[P]. 2021-10-08.
[22] 唐昌万. 一种增强橡胶用短切玄武岩纤维浸润剂及制备方法:107804979A[P]. 2018-03-16.
TANG Changwan. A short-cut basalt fiber infiltrant for reinforced rubber and preparation method: 107804979A[P]. 2018-03-16.
[23] SCHOLLER L, NESTLER B, DENNISTON C. Modeling of a two-stage polymerization considering glass fibre sizing using molecular dynamics[J]. Nanoscale Advances, 2022, 5:106-118.
doi: 10.1039/d2na00562j pmid: 36605801
[24] ZUO CX, SI JW, LI JY, et al. Effect of aqueous polyurethane film-forming agents on the performance of continuous basalt fibers[J]. Journal of Functional Polymers, 2022, 35(4):387-394.
[25] 曾双能. 水性聚氨酯型玄武岩纤维浸润剂的制备及性能研究[D]. 成都: 成都理工大学, 2021:24-34.
ZENG S N. Preparation and performance study of water-based polyurethane type basalt fiber infiltrant[D]. Chengdu: Chengdu University of Technology, 2021:24-34.
[26] TIAN J, GUO H J, YANG W L. Synthesis and properties of cationic waterborne polyurethane emulsion modified by nano-SiO2[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(9):65-68.
[27] ZHANG W S, YANG C L, YAO L L, et al. Effect of surface properties and sizing agents on interfacial properties of carbon fiber reinforced polycarbonate composites[J]. New Carbon Mater, 2019, 34:554-555.
[28] ZHANG W S, YANG C L, YAO L L. Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites[J]. Journal of Applied Polymer Science, 2019, 136(38): 47982-47991.
[29] LI S X, YANG C L, YAO L L, et al. Interface properties of epoxy and polyurethane mutually sized carbon fiber reinforced composites[J]. Fibers and Polymers, 2022, 23: 775-783.
[30] CHENG L M, ZHU N Q, NI Z B, et al. Enhancing the mechanical and thermal properties of waterborne polyurethane composites with thermoset epoxy resin microspheres[J]. New Journal of Chemistry, 2020, 44: 9896-9902.
[31] 邵灵达, 黄锦波, 金肖克, 等. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(4):68-73.
SHAO Lingda, HUANG Jinbo, JIN Xiaoke, et al. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites[J]. Journal of Textile Research, 2022, 43(4):68-73.
[32] LUO X Y, WEI Y H, MA L L, et al. Effect of corrosive aging environments on the flexural properties of silane-coupling-agent-modified basalt-fiber-reinforced composites[J]. Materials, 2023. DOI: 10.3390/ma16041543.
[33] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6,6 composites[J]. Compos Part B-Eng, 2019, 163:511-521.
[34] YU S, OH K H, HONG S H. Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites by improving interfacial bonding strength through plasma-polymerization[J]. Compos Sci Technol, 2019. DOI: 10.1016/j.compscitech.2019.107756.
[35] ARSLAN C, DOGAN M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites[J]. Compos Part B-Eng, 2018, 8:145-154.
[36] CECH V, KNOB A, LASOTA T, et al. Surface modification of glass fibers by oxidized plasma coatings to improve interfacial shear strength in GF/polyester composites[J]. Polym Compos, 2019, 40: 186-193.
[37] WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Mater Chem Phys, 2021. DOI: 10.1016/j.matchemphys.2021.125024.
[38] ZHANG S C, ZHONG T H, XU Q B, et al. The effects of chemical grafting 1,6-hexanediol diglycidyl ether on the interfacial adhesion between continuous basalt fibers and epoxy resin as well as the tensile strength of composites[J]. Constr Build Mater, 2022. DOI: 10.1016/j.conbuildmat.2022.126563.
[39] JIANG S, LI Q, ZHAO Y, et al. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites[J]. Compos Sci Technol, 2015, 110: 87-94.
[40] HAN S J, REN K, GENG C Z, et al. Enhanced interfacial adhesion via interfacial crystallization between sisal fiber and isotactic polypropylene: Direct evidence from single-fiber fragmentation testing[J]. Polym Int, 2014, 63: 646-651.
[41] SANG L, ZHAO M Y, LIANG Q S, et al. Silane-treated basalt fiber-reinforced poly (butylene succinate) biocomposites: interfacial crystallization and tensile properties[J]. Polymers, 2017. DOI: 10.3390/polym9080351.
[42] BAHRAMNIA H, SEMNANI H M, HABIBOLAHZADEH A, et al. The effect of 3-(glycidoloxy propyl) trimethoxy silane concen-tration[J]. Silicon, 2022, 14:4969-4977.
[43] CHU C, GE H, ZHANG K, et al. Synergistic effect of nano-SiO2 and small-sized graphene oxide on carbon fiber/epoxy composite[J]. Polym Compos, 2019, 40(12): 4588-4596.
[44] PREDA N, COSTAS A, LILLI M, et al. Functionalization of basalt fibers with ZnO nanostructures by electroless deposition for improving the interfacial adhesion of basalt fibers/epoxy resin compo-sites[J]. Compos Part A, Appl Sci Manuf, 2021. DOI: 10.1016/j.compositesa.2021.106488.
[45] MITTAL G, RHEE K Y. Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites[J]. Compos Sci Technol, 2018, 165 :84-94.
[46] KIM M, LEE T W, PARK S M, et al. Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers[J]. Compos Part a-Appl S, 2019, 123:123-131.
[47] DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Compos Part B, 2015, 73: 166-180.
[48] ZHOU S F, WANG J J, WANG S Z, et al. Facile preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites[J]. Mater Chem Phys, 2018, 217: 315.
[49] WANG J J, ZHOU S F, HUANG J, et al. Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological proper-ties[J]. RSC Adv, 2018, 8: 12222-12231.
[50] LEE D T, ZHAO J, OLDHAM C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simu-lants[J]. ACS Appl Mater Interfaces, 2017, 9: 44847-44855.
[51] WANG Z T, LUO H J, ZHANG L, et al. Mechanical properties of basalt fiber improved by starch phosphates sizing agent[J]. Appl Surf Sci, 2020. DOI: 10.1016/j.apsusc.2020.146196.
[52] EYCKENS D J, CHAMPION M E, FOX B L, et al. Solvate ionic liquids as reaction media for electrocyclic transformations[J]. Eur J Org Chem, 2016, 5: 913-917.
[53] EYCKENS D J, SERVINIS L, SCHEFFLER C, et al. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers[J]. Mater Chem A, 2018, 10: 4504-4514.
[54] LI C, Wang H Y, ZHAO X L, et al. Investigation of mechanical properties for basalt fiber/epoxy resin composites modified with La[J]. Coatings, 2021. DOI: 10.3390/coatings11060666.
[55] 宋雪旸, 张岩, 徐成功, 等. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11):84-88.
doi: 10.13475/j.fzxb.20201004005
SONG Xueyang, ZHANG Yan, XU Chenggong, et al. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites[J]. Journal of Textile Research, 2021, 42(11):84-88.
doi: 10.13475/j.fzxb.20201004005
[56] RALPH C, LEMOINE P, BOYD A, et al. The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene[J]. Appl Surf Sci, 2019, 475:435-445.
[1] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[2] 岳欣琰, 邵剑波, 王小虎, 韩潇, 赵晓曼, 洪剑寒. 基于镀银锦纶/锦纶/水性聚氨酯复合纱的一维结构柔性电容传感器[J]. 纺织学报, 2025, 46(03): 82-89.
[3] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
[4] 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34.
[5] 刘仁义, 杨琴, 孙宝忠, 顾伯洪, 张威. 织物增强复合材料的电热驱动形状记忆回复行为[J]. 纺织学报, 2025, 46(01): 72-79.
[6] 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94.
[7] 王理杰, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 衣康酸聚乙二醇单醚酯封端水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2024, 45(10): 145-151.
[8] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[9] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[10] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[11] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[12] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
[13] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[14] 胡亦雯, 唐虹, 唐天一, 魏书涛. 仿松球叶片结构面料的制备及其调湿性能[J]. 纺织学报, 2023, 44(08): 118-125.
[15] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!