纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 27-33.doi: 10.13475/j.fzxb.20240300101

• 纤维材料 • 上一篇    下一篇

不同聚乳酸材料的性能对比

乔思杰, 邢桐贺, 童爱心, 史芷丞, 潘恒, 刘可帅, 余豪(), 陈凤翔   

  1. 武汉纺织大学 纺织新材料与先进加工全国重点实验室, 湖北 武汉 430000
  • 收稿日期:2024-03-01 修回日期:2024-11-05 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 余豪(1990—),男,讲师,博士。主要研究方向为现代纺织技术。E-mail: hyu@wtu.edu.cn
  • 作者简介:乔思杰(1995—),男,硕士生。主要研究方向为高性能纤维。
  • 基金资助:
    国家自然科学基金项目(52373085);湖北省自然科学基金面上项目(2023AFB828)

Comparison of properties of different polylactic acid materials

QIAO Sijie, XING Tonghe, TONG Aixin, SHI Zhicheng, PAN Heng, LIU Keshuai, YU Hao(), CHEN Fengxiang   

  1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430000, China
  • Received:2024-03-01 Revised:2024-11-05 Published:2025-03-15 Online:2025-04-16

摘要: 为进一步揭示国内外产聚乳酸(PLA)性能间的差异,选用国内外某公司生产的聚乳酸粒料和有益母粒为研究对象,借助凝胶渗透色谱仪、光学显微镜、自动旋光仪、X射线衍射仪、黏度仪、流变仪、热重分析仪、熔融指数仪表征2种粒料的分子量、表面形貌及光学纯度、结晶度、熔体流变性能及热稳定性间的差异。结果显示:国外某公司生产的聚乳酸平均分子量及其分布、结晶度、光学纯度优于国内某公司产品,其热稳定性略优于国内某公司产品,且国外某公司聚乳酸产品表现出更高的储能模量、损耗模量和复数黏度和更优异的加工性能。该研究结果可为我国的PLA加工提供参考。

关键词: 聚乳酸, 结晶结构, 母粒, 结晶程度, 流变性能, 热稳定性

Abstract:

Objective Against the background of global climate and environmental deterioration caused by excessive CO2 emission and other factors, the development of a low-carbon recycling economy has become a global consensus. As a biodegradable green material, polylactic acid (PLA) is one of the important materials that can be adopted to address the environmental pollution. However, the performance of PLA varies greatly among different brands. This study compares the properties of PLA produced by China and America companies.

Method PLA masterbatch (PLA FY from a domestic manufacturer, PLA-NW from an oversea manufacturer) was put into a beaker containing deionized water and washed by ultrasonic cleaning for 30 min, and then put into an oven for drying at 45 ℃ for 6 h. The dried PLA masterbatch was put into a beaker and sealed and stored for use. Then, the differences between the molecular weight, surface morphology and optical purity, crystallinity, melt rheological properties and thermal stability of the granules provided by the two manufacturers were evaluated by gel permeation chromatography, optical microscope, automatic polarimeter, X-ray diffractometer, viscometer, rheometer, thermogravimetric analyzer, and melt indexer.

Results From the gel chromatographic analysis, the molecular mass distribution curves of the two PLA masterbatches were generaly similar, and both existed as single peaks, and the values of number-average molecular weight (Mn) (41 755 g/mol), weight-average molecular weight (Mw) (105 887 g/mol), Z-average molecular weight (Mz) (183 764 g/mol), and peak molecular weight (Mp) (99 581 g/mol) of PLA-NW were higher than those of PLA-FY. The molecular weight distribution index of PLA-NW (Mw/Mn=2.535 9) is lower than that of PLA-FY (Mw/Mn=2.658 4), which indicates that the molecular mass distribution of PLA-FY is wider. The surface of PLA-NW is relatively much rougher. The multi-sample statistics show that the diameter of PLA-FY is (4.477 2±0.102 5) mm, and that of PLA-NW is (5.100 6±0.098 5) mm, in the long direction. PLA-FY has an optical purity of 97.85%, whereas PLA-NW has an optical purity of 105.6%. In addition, both PLA-NW and PLA-FY are typical type-α crystals, indicating the typical orthorhombic crystal structure of PLA. The characteristic viscosity of PLA-NW (140.898 mL/g) is higher than that of PLA-FY (112.749 mL/g). The decomposition temperatures of PLA-NW at 5% and 50% weight loss were higher than that of PLA-FY, while the temperature Tt (387.30 ℃) of PLA-NW at the termination of decomposition was higher than that of PLA-FY at the termination of decomposition (378.23 ℃). Its temperature at the maximum decomposition rate (Tmax=371.79 ℃) was also higher than that of PLA-FY (Tmax=363.73 ℃). PLA-NW showed better thermal stability. In addition, the melt index of PLA-FY was always greater than that of PLA-NW. In general, the higher the melt index, the lower the molecular weight, the lower the temperature resistance, and the less difficulty the processing. This further confirms that the temperature resistance of PLA-NW is better than that of PLA-FY.

Conclusion This paper selects two types of spinning-grade PLA masterbatch manufactured domestically and abroad, and analyzes the performance of the two types of PLA granules through a series of characterization tests. The molecular weight of PLA-NW is slightly higher than that of PLA-FY, and the molecular weight distribution of PLA-NW is more uniform. Also, the crystallinity, optical purity, thermal stability and rheological properties of PLA-NW are better than that of PLA-FY.

Key words: polylactic acid, crytalline structure, masterbatch, degree of crystallization, rheology property, thermal stability

中图分类号: 

  • TQ323.41

图1

PLA-NW和PLA-FY母粒的GPC曲线"

表1

PLA-NW和PLA-FY母粒的平均分子量及其分布指数"

试样名称 分子量/(g·mol-1) PDI
Mn Mw Mp Mz
PLA-NW 41 755 105 887 99 581 183 764 2.535 9
PLA-FY 31 779 84 482 82 678 148 025 2.658 4

图2

PLA-FY和PLA-NW母粒的显微镜照片"

表2

PLA-NW和PLA-FY母粒的比旋光度和光学纯度"

试样名称 旋光度 比旋光度 光学纯度/%
PLA-NW -0.367 3 -170.1 105.60
PLA-FY -0.235 3 -157.5 97.85

图3

PLA-NW和PLA-FY母粒的XRD曲线"

表3

PLA-NW和PLA-FY母粒的结晶度和出峰位置"

试样名称 结晶度/% 出峰位置/(°)
位置1 位置2 位置3 位置4
PLA-NW 58.11 15.19 17.04 19.41 22.63
PLA-FY 54.44 15.05 16.84 19.20 22.44

图4

PLA-NW和PLA-FY母粒的动态流变特性"

图5

PLA-NW和PLA-FY母粒的TG和DTG曲线"

表4

PLA-NW和PLA-FY母粒的热重参数"

试样名称 T5/℃ T50/℃ Tt/℃ Tmax/℃
PLA-NW 326.33 364.20 387.30 371.79
PLA-FY 323.18 356.63 378.23 363.73

图6

PLA-NW和PLA-FY母粒的熔融指数。"

[1] HAMAS A, MOON H, ZHENG JJ, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 3494-3511.
[2] 王正祥. 我国聚乳酸产业发展现状与对策研究[J]. 中国工程科学, 2021, 23(6): 155-166.
doi: 10.15302/J-SSCAE-2021.06.015
WANG Zhengxiang. China's polylactic acid industry: current status and development strategies[J]. Strategic Study of CAE, 2021, 23(6): 155-166.
doi: 10.15302/J-SSCAE-2021.06.015
[3] 黄智宇, 邢桐贺, 何安南, 等. 废旧纺织品的资源化循环再生利用研究进展[J]. 科学通报, 2023, 68(2/3): 188-203.
HUANG Zhiyu, XING Tonghe, HE Annan, et al. Research progress on resource recycling and reusing of waste textiles[J]. Chin Sci Bull, 2023, 68(2/3): 188-203.
[4] 张玉, 骆宇新, 邢桐贺, 等. 双碳目标下废旧聚酯纺织品的回收再利用研究进展[J]. 高分子材料科学与工程, 2023, 39(10): 182-190.
ZHANG Yu, LUO Yuxin, XING Tonghe. Progress in research of resource recycling and reusing of waste polyester textiles under dual carbon target[J]. Polymer Materials Science & Engineering, 2023, 39(10): 182-190.
[5] SHEN MC, LI YG, SONG B, et al. Smoked cigarette butts: unignorable source for environmental microplastic fibers[J]. Science of the Total Environment, 2021. DOI: 10.1016/j.scitotenv.2021.148384.
[6] LUNT J, SHAFER A L. Polylactic acid polymers from corn: applications in the textiles industry[J]. Journal of Textile Industry, 2000, 29(3): 191-205.
[7] VAN W P, DUSSELIER M, VANLEEUW E, et al. Lactide synthesis and chirality control for polylactic acid production[J]. Chem Sus Chem, 2016, 9(9): 907-921.
[8] MOON S I, LEE C W, MIYAMOTO M, et al. Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L-lactic acid)[J]. Journal of Polymer Science A Polymer Chemistry, 2000, 38(9): 1673-1679.
[9] PARK S J, LEE S Y, KIM T W, et al. Biosynthesis of lactate containing polyesters by metabolically engineered bacteria[J]. Biotechnology Journal, 2012, 7(2): 199-212.
[10] 王子羽, 何文文, 徐云龙, 等. 有机胍催化法可控合成聚乳酸系环境友好材料[J]. 高分子学报, 2018 (7): 28-38.
WANG Ziyu, HE Wenwen, XU Yunlong, et al. Controlled synthesis of PLA-series environment-friendly polymers with guanidine catalysts[J]. Acta Polymerica Sinica, 2018 (7): 28-38.
[11] MARK J E, MARK J, MARK J, et al. Polymer data handbook[M]. New York: Oxford University Press, 1999. DOI: 10.1093/oso/9780195181012.001.0001.
[12] ELING B, GOGOLEWSKI S, PENNINGS A J. Biodegradable materials of poly(L-lactic acid): 1. melt-spun and solution-spun fibres[J]. Polymer, 1982(23): 1587-1593.
[13] NEERJA Y, LATA N, SUNIL Kumar K. Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization:a step towards curing the environmental plastic issue[J]. Environmental Technology & Innovation, 2021. DOI: 10.1016/j.eti.2021.101845.
[14] 张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(2): 55-62.
ZHANG Yujing, CHEN Lianjie, ZHANG Sidong et al. Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown mater-ials[J]. Journal of Textile Research, 2023, 44(2): 55-62.
[15] FENG L D, SUN B, BIAN X C, et al. Determination of D-lactate content in poly(lactic acid) using polarimetry[J]. Polym Test, 2010, 29(7): 771-776.
[16] SAHA S K, TSUJI H. Effects of molecular weight and small amounts of D-lactide units on hydrolytic degradation of poly(L-lactic acid)s[J]. Polymer Degradation and Stability, 2006, 91(8): 1665-1673.
[17] DA S D, KADURI M, POLEY M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems[J]. Chemical Engineering Journal, 2018, 340: 9-14.
doi: 10.1016/j.cej.2018.01.010 pmid: 31384170
[18] PAN P, LIANG Z, ZHU B, et al. Blending effects on polymorphic crystallization of poly(L-lactide)[J]. Macromolecules, 2009, 42(9): 3374-3380.
[19] 项盛, 邵俊, 冯立栋, 等. 光学纯度对聚左旋乳酸结晶与熔融行为的影响[J]. 应用化学, 2016, 33(8): 887-893.
doi: 10.11944/j.issn.1000-0518.2016.08.150423
XIANG Sheng, SHAO Jun, FENG Lidong, et al. Effect of optical purities on the crystallization and melting behaviors of poly(L-lactic acid)[J]. Chinese Journal of Applied Chemistry, 2016, 33(8): 887-893.
doi: 10.11944/j.issn.1000-0518.2016.08.150423
[20] LI L, WANG H, JIANG T, et al. Effect of epoxy chain extenders on molecular structure and properties of polylactic acid[J]. Journal of Applied Polymer Science, 2023. DOI: 10.1002/app.54379.
[21] VIRÁG ÁD, TÓTH C, MOLNÁR K. Photodegradation of polylactic acid: characterization of glassy and melt behaviour as a function of molecular weight[J]. International Journal of Biological Macromolecules, 2023. DOI: 10.1016/j.ijbiomac.2023.126336.
[22] 朱斐超. 尼龙11/埃洛石纳米管复合聚乳酸材料及其增强增韧熔喷非织造材料的研究[D]. 杭州: 浙江理工大学, 2019: 29.
ZHU Feichao. Study on polyamide 11/halloysite nano-tubes hybrid poly(lactic acid) composites and reinforced and toughened melt-blown nonwovens[D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 29.
[23] 彭威, 江太君. 热降解法制备喷丝级高熔指聚丙烯及其流变性能研究[J]. 化工技术与开发, 2020, 49(11): 15-17.
PENG Wei, JIANG Taijun. Preparation and properties of melt-blown polypropylene manufactured by thermal degradation[J]. Technology & Development of Chemical Industry, 2020, 49(11): 15-17.
[1] 张惠琴, 吴改红, 刘霞, 刘淑强, 赵恒, 刘涛. 生物可降解聚乳酸防护口罩的开发及性能评估[J]. 纺织学报, 2025, 46(03): 116-122.
[2] 赵珂, 张恒, 程文胜, 甄琪, 步青云, 崔景强. 类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 51-60.
[3] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[4] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[5] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[6] 贾笑娅, 王蕊宁, 侯宵, 何彩婷, 刘杰, 孙润军, 王秋实. 多相剪切增稠液增强柔性层合结构防刺材料的制备及其性能[J]. 纺织学报, 2024, 45(10): 113-121.
[7] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[8] 王文, 张乐乐, 黄阳杰, 谭浩, 方舒婷, 向晨雪, 王栋. 聚乙烯醇-乙烯/SiO2复合柔性驱动膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 10-17.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[11] 翟倩, 张恒, 赵珂, 朱文辉, 甄琪, 崔景强. 仿生竹节纤维基加湿材料的叠层设计及其导湿快干性能[J]. 纺织学报, 2024, 45(02): 1-10.
[12] 魏义慧, 张宇静, 邓辉话, 邓庆辉, 陈浩锵, 张须臻, 于斌, 朱斐超. 高熔融指数聚乙烯母粒的制备及其红外透射熔喷材料的可纺性[J]. 纺织学报, 2024, 45(02): 28-35.
[13] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[14] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[15] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!