纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 154-161.doi: 10.13475/j.fzxb.20240405401

• 染整工程 • 上一篇    下一篇

超疏水自清洁结构色织物的制备及其性能

赵祥璐, 方寅春(), 李伟   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2024-04-22 修回日期:2024-12-15 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 方寅春(1986—),男,副教授,博士。主要研究方向为生态染整技术。E-mail:fangyinchun86@163.com
  • 作者简介:赵祥璐(1997—),男,硕士生。主要研究方向为先进纤维及纺织印染加工技术。
  • 基金资助:
    安徽省纺织工程技术研究中心;安徽省高等学校纺织面料重点实验室联合开放基金项目(2021AETKL11);安徽工程大学校级科研项目(Xjky2022061)

Preparation and properties of superhydrophobic self-cleaning structural color fabrics

ZHAO Xianglu, FANG Yinchun(), LI Wei   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2024-04-22 Revised:2024-12-15 Published:2025-04-15 Online:2025-06-11

摘要: 为获得具有特殊功能的结构色织物以拓展其应用,利用合成的不同粒径的SiO2微球,采用雾化沉积法在聚丙烯酸酯(PA)黏合剂预处理的涤纶织物表面形成结构色,将聚二甲基硅氧烷(PDMS)超疏水整理剂借助喷涂法处理结构色织物。探讨了不同SiO2微球粒径对结构色显色性能的影响,测定了PDMS处理后结构色织物的疏水性能和自清洁性能,并对结构色织物的色牢度、柔软性和透气性进行测定。结果表明:不同粒径的SiO2微球可在涤纶织物上形成深蓝色、蓝色、墨绿色、绿色和粉红色5种不同颜色的结构色;经PDMS处理后的结构色织物静态水接触角和滚动角分别可以达到152.5°和6.5°,表现出了优异的超疏水性能,同时结构色织物具有自清洁的功能,且PDMS处理不会对结构色织物的颜色产生明显影响;经PA黏合剂预处理的结构色织物具有良好的耐水洗、耐摩擦色牢度;经PDMS处理后结构色织物的柔软性和透气性相比于原织物略有降低,但不会对其服用性能产生明显的影响。

关键词: SiO2微球, 结构色, 疏水性能, 自清洁性能, 色牢度, 涤纶织物, 功能纺织品

Abstract:

Objective Functional structural color can not only produce bright colors, but also provide special functions, which has been widely studied in recent years. In this study, polyacrylate binder and polydimethylsiloxane (PDMS) superhydrophobic finishing agent were used to treat SiO2 microspheres structural colored fabrics to prepare structural colored fabrics with high color fastness, superhydrophobicity and self-cleaning function. This study is expected to provide experimental basis for the development of structural colored fabrics with bright color, superhydrophobicity and self-cleaning functions.

Method SiO2 microspheres with different particle sizes were synthesized using Stober method with tetraethyl silicate and ammonia as raw materials by adjusting the amount of solvent anhydrous ethanol. A polyester fabric was pre-treated with polyacrylate (PA) before SiO2 microspheres were atomized and deposited on the pre-treated polyester fabric to prepare structural colored fabric. Following this, the fabric was treated with PDMS. The effects of SiO2 microspheres with different particle sizes on the color properties of structural colors were investigated. The hydrophobic and self-cleaning properties of structural colored fabrics were investigated. The colorfastness, air permeability and softness of the structural colored fabrics were also tested.

Results Five types of SiO2 microspheres with different particle sizes (218, 233, 240, 259 and 301 nm) were synthesized adopting the Stober method. SiO2 microspheres were assembled into short-range ordered and long-range disordered amorphous photonic crystals on the surface of polyester fabric by atomization deposition to obtain dark blue, blue, dark green, green and pink structural colored fabrics. After PDMS treatment, the position of the reflectance peaks of the five structural colors did not change, indicating that PDMS treatment did not affect the color tone of the structural colors. The reflectance peak of the structural colored fabrics after PDMS treatment was less than 0.97% compared with that before treatment, indicating that PDMS treatment would not have a significant effect on the color of the structural colored fabric. The static contact angle and rolling angle of the structural colored fabric after PDMS treatment reached 152.5°and 6.5°, respectively, indicating that the structural colored fabric after PDMS treatment has excellent superhydrophobic properties. The common liquid droplets in our daily life can maintain the spherical shape on the surface of the structural colored fabric after PDMS treatment, indicating excellent self-cleaning properties of the PDMS treated structural colored fabrics. The reflectance peak of the structural colored fabrics after washing was only 0.35% lower than that before washing. The results showed that the structural colored fabric had good washing fastness. The reflectance peak of the structural colored fabric decreased by only 0.42% after rubbing, and the color of the structural colored fabric did not change significantly, indicating that the structural colored fabric had good rubbing fastness. After PDMS treatment, the air permeability of the structural colored fabric decreased slightly, and the bending length and flexural rigidity increased slightly compared with the original fabric, suggesting that PDMS treatment had little effect on the softness and air permeability of the structural colored fabric.

Conclusion In this study, five types of SiO2 microspheres with different particle sizes were successfully prepared by adjusting the amount of anhydrous ethanol in the synthesis process. Accordingly, five different structural colors of dark blue, blue, dark green, green and pink were formed on the polyester fabric by atomization deposition method. With the increase of the particle size of SiO2 microspheres, the color of the structural colored fabric demonstrated a significant red shift. The structural colored fabrics treated with PDMS obtain excellent superhydrophobicity and self-cleaning properties. Due to the introduction of PA binder, the structural colored fabrics gwere endowed with good washing and rubbing colorfastness, whereas the wearability of the treated structural colored fabric was not significantly affected. This study provides an experimental basis for the development of structural colored fabrics with bright colors, superhydrophobicity and self-cleaning functions.

Key words: SiO2 microsphere, structural color, hydrophobic property, self-cleaning property, color fastness, polyester fabric, functional textile

中图分类号: 

  • TS193.6

图1

SiO2结构色织物表面SEM照片"

图2

SiO2结构色织物横截面SEM照片"

图3

结构色织物的照片"

图4

结构色织物的反射率曲线"

图5

PDMS处理后结构色织物的照片"

图6

PDMS处理后结构色织物的反射率曲线"

图7

PDMS处理前后结构色织物的接触角和滚动角测试照片"

图8

PDMS处理后结构色织物的防沾污测试照片"

图9

PDMS处理后结构色织物的自清洁测试照片"

图10

水洗前后结构色织物的照片"

图11

水洗前后结构色织物的反射率"

图12

结构色织物的耐摩擦色牢度"

表1

结构色织物的硬挺度与透气性"

试样 硬挺度(经向) 硬挺度(纬向) 透气率/
(mm·s-1)
弯曲长
度/cm
抗弯刚度/
(mN·cm)
弯曲长
度/cm
抗弯刚度/
(mN·cm)
原织物 4.57 2.22 5.12 2.47 40.486±1.70
结构色织物 4.91 2.35 5.28 2.58 27.964±0.21
[1] 屠立涛, 王晓辉, 梁小慧, 等. 光子晶体结构生色织物的喷涂法制备及其光学性质[J]. 染整技术, 2023, 45(6): 15-22.
TU Litao, WANG Xiaohui, LIANG Xiaohui, et al. Preparation and optical properties of colored fabric with photonic crystal structure by spraying method[J]. Dyeing & Finishing Technology, 2023, 45(6): 15-22.
[2] VUKUSIC P, SAMBLES J R. Photonic structures in biology[J]. Nature, 2003, 424(6950): 852-855.
[3] HOU J, LI M Z, SONG Y L. Patterned colloidal photonic crystals[J]. Angewandte Chemie, 2018, 57(10): 2544-2553.
[4] HOU X Y, LI F Z, SONG Y L, et al. Recent progress in responsive structural color[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2885-2900.
[5] 陈佳颖, 辛斌杰, 辛三法, 等. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(4): 181-187.
CHEN Jiaying, XIN Binjie, XIN Sanfa, et al. Research progress in structurally colored fabrics using photonic crystals[J]. Journal of Textile Research, 2020, 41(4): 181-187.
[6] 杜宏艳, 戚宇帆, 吴晨雪, 等. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
doi: 10.11868/j.issn.1001-4381.2018.001044
DU Hongyan, QI Yufan, WU Chenxue, et al. Preparation and optical properties of SiO2 photonic crystal structure color films[J]. Journal of Materials Engineering, 2019, 47(12): 111-117.
doi: 10.11868/j.issn.1001-4381.2018.001044
[7] 朱小威, 韦天琛, 邢铁玲, 等. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(9): 90-96.
ZHU Xiaowei, WEI Tianchen, XING Tieling, et al. Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures[J]. Journal of Textile Research, 2021, 42(9): 90-96.
[8] LIU F F, TAO C A, TANG B T. Recent advances in environmentally friendly structural colored fabrics[J]. Textile Research Journal, 2023, 93(7/8): 1861-1877.
[9] LI Y C, ZHOU L, LIU G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates[J]. Applied Surface Science, 2018, 444: 145-153.
[10] YANG H Y, ZHOU J Y, DUAN Z J, et al. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3244-3254.
[11] 向娇娇, 柳浩, 欧阳申珅, 等. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(4): 111-119.
XIANG Jiaojiao, LIU Hao, OUYANG Shenshen, et al. Preparation of cotton fabrics with both double-sided structural colored effect and high hydrophobicity by one-step method[J]. Journal of Textile Research, 2024, 45(4): 111-119.
[12] SHA D S, SUN Y R, XING L L, et al. Preparation of polyphenol-structural colored silk fabrics with bright colors[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.131140.
[13] SHI X D, CAO X X, DOU R M, et al. Structural color modified fabrics with excellent antibacterial property[J]. Journal of Donghua University (English Edition), 2021, 38 (5): 404-411.
[14] GAO L X, TANG A, BI W L, et al. Three-in-one: saturated, UV-protective and anti-bacterial structural colored textiles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI: 10.1016/j.colsurfa.2024.133180.
[15] GAO W H, RIGOUT M, OWENS H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals[J]. Journal of Nanoparticle Research, 2016, 18: 1-10.
[16] LIU X H, WU J, YAN P, et al. Bio-inspired fabrication of non-iridescent structural color coatings with excellent colorfastness for rapid and large-scale colorization of textile[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI: 10.1016/j.colsurfa.2024.133964.
[17] LIU P M, CHEN J L, ZHANG Z X, et al. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J]. Nanoscale, 2018, 10(8): 3673-3679.
doi: 10.1039/c7nr08056e pmid: 29327029
[18] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
doi: 10.13475/j.fzxb.20211108514
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
doi: 10.13475/j.fzxb.20211108514
[19] 李苗苗, 吕全乾, 张连斌, 等. 无角度依赖性的响应性光子晶体研究进展[J]. 功能高分子学报, 2018, 31(6): 513-529.
LI Miaomiao, LYU Quanqian, ZHANG Lianbin, et al. Recent progress on angleindependent responsive photonic crystals[J]. Journal of Functional Polymers, 2018, 31(6): 513-529.
[20] WANG S T, LIU K S, YAO Xi, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.
doi: 10.1021/cr400083y pmid: 26244444
[21] WANG X H, LI Y C, ZHAO Q, et al. High structural stability of photonic crystals on textile substrates, prepared via a surface-supported curing strategy[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19221-19229.
[22] LIU H, ZHANG Y X, JIN M T, et al. Preparation of carbon fiber substrates with structural colors based on photonic crystals[J]. Dyes and Pigments, 2022. DOI:10.1016/j.dyepig.2022.110338.
[1] 郭洁琰, 徐颖雯, 丁放, 任学宏. 卤胺抗菌剂及其改性纤维的应用研究进展[J]. 纺织学报, 2025, 46(04): 255-263.
[2] 赵强强, 王韩星, 张奉轩, 何瑾馨, 周俊, 周兆昌, 董霞. 聚六亚甲基双胍盐酸盐改性对棉织物耐日晒色牢度的影响[J]. 纺织学报, 2025, 46(04): 109-118.
[3] 梁金星, 李东盛, 李壹帆, 周景, 罗航, 陈佳, 胡新荣. 基于照相测色的纺织品色牢度评级方法[J]. 纺织学报, 2025, 46(04): 119-128.
[4] 黄春月, 黄鑫, 杜海娟, 徐文杰, 杨雪梅, 万科研, 李旭, 高杰. 钼氧簇复合物整理剂制备及其整理棉织物的防紫外线性能[J]. 纺织学报, 2025, 46(04): 138-145.
[5] 殷连博, 李家炜, 段慧敏, 宋理想, 陈玉霜, 厉巽巽, 戚栋明. 液体分散染料染色废水的循环染色[J]. 纺织学报, 2025, 46(03): 131-140.
[6] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[7] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[8] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[9] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[10] 朱琳, 王展鹏, 吴宝宅, 汪少朋, 刘一鸣, 代成娜, 陈标华. 废旧涤纶织物的溶剂萃取剥色及其对醇解的影响[J]. 纺织学报, 2025, 46(01): 103-110.
[11] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[12] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[13] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[14] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[15] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!