纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 47-55.doi: 10.13475/j.fzxb.20240603201

• 纤维材料 • 上一篇    下一篇

基于废旧亚麻织物的超弹性气凝胶制备及其性能

张文丽1,2, 刘鑫1,2, 张俏俏1,2, 支超1,2, 李建伟2,3, 樊威1,2()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.西安工程大学 材料工程学院, 陕西 西安 710048
  • 收稿日期:2024-06-13 修回日期:2024-11-18 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 樊威(1986—),男,教授,博士。主要研究方向为三维纺织复合材料结构与性能、废旧纺织品高值化利用、智能纤维及智能可穿戴、安全防护用纺织品等方面。E-mail:fanwei@xpu.edu.cn
  • 作者简介:张文丽(1998—),女,硕士生。主要研究方向为废旧纺织品高值化利用。
  • 基金资助:
    国家自然科学基金项目(52073224);陕西省杰出青年科学基金项目(2024JC-JCQN-03);西安市科技局先进制造业技术攻关项目(21XJZZ0019)

Preparation and properties of hyperplastic aerogel based on waste linen fabrics

ZHANG Wenli1,2, LIU Xin1,2, ZHANG Qiaoqiao1,2, ZHI Chao1,2, LI Jianwei2,3, FAN Wei1,2()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. School of Materials Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2024-06-13 Revised:2024-11-18 Published:2025-04-15 Online:2025-06-11

摘要: 针对气凝胶材料制备成本高、强度低、韧性低和结构稳定性较弱的问题,对废旧麻织物进行回收再利用,将获取的亚麻纤维进行预处理后获得分散良好的纤维悬浮液,运用冷冻干燥、高温交联的研究方法制备纤维素气凝胶,并对其形貌、弹性和隔热性能进行分析与研究。结果表明:当悬浮液中纤维溶液质量分数为0.2%时,所制备的亚麻纤维素气凝胶质量轻且弹性好,密度仅为5.13 mg/cm3,在50%形变压力下循环压缩60次后,其仍可回复至初始形状。同时,亚麻纤维素气凝胶还具有优良的隔热性能,可在80 ℃的加热台上长久保持温度在53 ℃,导热率为(0.038 2 ± 0.000 2)W/(m·K)。

关键词: 亚麻纤维, 气凝胶, 冷冻干燥, 超弹性, 隔热, 废旧亚麻织物再利用

Abstract:

Objective Aerogel is a solid material with an extremely low density that can fulfill various demands, including fireproofing, waterproofing, heat insulation and sound insulation. However, the current problem of high preparation costs, low strength, low toughness, and weak structural stability due to their preparation costs have seriously limited their promotion and application. To address this issue, cellulose aerogels were created using recycled fibers from reprocessed wast linen fabrics. The linen fibers were pre-treated to obtain a well-dispersed fiber suspension, followed by freeze-drying and high-temperature cross-linking.

Method The mixture of polyamide epoxy resin (PAE) with a mass fraction of 0.3% and pretreated linen fiber with water with a mass fraction of 0.1%-0.4% was first stirred in a magnetic stirrer at a speed of 300 r/min for 8 h at room temperature to obtain a well-dispersed fiber suspension. Then it was poured into a plastic mold and then placed into a freeze dryer at a temperature of -80 ℃ for freeze drying. Finally, the freeze-dried samples were put into a vacuum drying oven at a temperature of 120 ℃ and a pressure of half an atmosphere for 3 h.

Results The density test showed that as the mass fraction of linen fibers increased from 0.1% to 0.4%, and the average density of cellulose aerogel increased from 4.78 mg/cm3 to 5.75 mg/cm3. The unidirectional compression test showed that as the mass fraction of linen fibers increased from 0.1% to 0.4%, and the average degree of recovery of cellulose aerogel after unidirectional compression decreased from 88.9% to 86.7%. The cyclic compression test showed that when the number of cyclic compressions was increased from 0 to 60 times, the height of deformation recovery of the cellulose aerogel increased as the mass fraction of linen fibers was increased from 0.1% to 0.2%. However, the deformation recovery height of cellulose aerogels gradually decreased as the mass fraction of linen fibers continued to increase from 0.2% to 0.4%. The morphological characterization showed that before uncompressed, the pore size of the aerogels with 0.1% and 0.2% mass fraction of linen fibers was uniform, and the reticular structure was more complete in comparison with the aerogels with 0.3% and 0.4% mass fraction of linen fibers. After compression, the reticular structure and holes of the aerogel with a mass fraction of 0.4% of linen fibers were the most severely damaged, while the other aerogels with different mass fractions of linen fibers all maintained relatively intact reticular structures and cavities, with the aerogel with a mass fraction of 0.2% of linen fibers having the best structural retention. As can be seen from the thermal insulation performance test, the linen fiber mass fraction of 0.2%, the thickness of 10 mm of the aerogel in the 80 ℃ heating table, the heating time of 5 min within the temperature of the aerogel appeared to decline. The temperature of the aerogel can be maintained at 53 ℃ for a long time after the heating time is more than 5 min. As shown by the thermal conductivity test, the thermal conductivity of the cellulose aerogel gradually increased with the increase of the mass fraction of linen fiber from 0.1% to 0.4%, in which the thermal conductivity of the aerogel with the mass fraction of linen fiber of 0.1% was the lowest, reaching (0.038 2 ± 0.000 2)W/(m·K).

Conclusion In this study, aerogels with different characteristics were prepared by adjusting the concentration of linen fiber, thus changing the density of linen fiber aerogel. Compared with the high-density aerogel, the low-density aerogel has more uniform and dense pores, and the air filled in the pores can effectively reduce the thermal conductivity of the aerogel, realizing the excellent performance of aerogel thermal insulation. This will promote the development of linen fiber aerogel in the field of thermal insulation.

Key words: linen fiber, aerogel, freeze drying, super elasticity, thermal insulation, reuse of waste linen fabric

中图分类号: 

  • TS102.6

图1

亚麻纤维素气凝胶样品的展示"

图2

纤维素悬浮液"

图3

废旧亚麻纤维预处理后的形貌照片"

图4

废旧亚麻纤维预处理后的直径分布"

图5

不同质量分数纤维溶液的气凝胶密度"

图6

不同质量分数纤维溶液的气凝胶的孔隙率"

表1

单向压缩后气凝胶的高度及恢复程度"

纤维溶液
质量分
数/%
横向 纵向
原始高
度/cm
压缩高
度/cm
回复程
度/%
原始高
度/cm
压缩高
度/cm
回复程
度/%
0.1 1.8 1.6 88.9 2.3 2.05 89.1
0.2 1.8 1.61 89.4 2.3 2.08 90.4
0.3 1.8 1.57 87.2 2.3 2.03 88.3
0.4 1.8 1.56 86.7 2.3 2.01 87.4

图7

不同质量分数纤维溶液的压缩应力-应变曲线"

图8

压缩次数对不同质量分数纤维溶液的气凝胶厚度影响"

图9

未压缩不同质量分数纤维溶液的气凝胶形貌照片"

图10

压缩60次后不同质量分数溶液纤维的气凝胶形貌照片"

图11

相同位置加热不同时间的气凝胶的红外热成像"

图12

相同位置测试不同温度的气凝胶的红外热成像"

图13

不同质量分数纤维溶液的气凝胶的导热率"

表2

亚麻纤维素气凝胶与文献报道的气凝胶导致系数对比"

文献 导热系数/
(W·m-1·K-1)
材料
[31] 0. 060 大麻
[32] 0.592 导热环氧树脂/石墨烯
[33] 0.056 二氧化硅
[34] 0.060 羽绒纤维
[35] 0.042 羧基纤维素
[36] 0.043 氮化硼纤维
[37] 0.052 甘蔗渣
[38] 0.057 废竹纤维
本文结果 0.038 2±0.000 2 废旧亚麻
[1] 赵伦玉, 隋晓锋, 毛志平, 等. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189,196.
doi: 10.13475/j.fzxb.20210501210
ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, et al. Research progress in aerogel materials application for textiles[J]. Journal of Textile Research, 2022, 43(12): 181-189,196.
doi: 10.13475/j.fzxb.20210501210
[2] 陶丹丹, 白绘宇, 刘石林, 等. 纤维素气凝胶材料的研究进展[J]. 纤维素科学与技术, 2011, 19(2): 64-75.
TAO Dandan, BAI Huiyu, LIU Shilin, et al. Research progress in the cellulose based aerogels materials[J]. Journal of Cellulose Science and Technology, 2011, 19(2): 64-75.
[3] FAROOQ A, FAHEEM A, ZEYNEP U, et al. The role and applications of aerogels in textiles[J]. Advances in Materials Science and Engineering, 2022.DOI: 10.1155/2022/2407769.
[4] 史文路, 张波, 曲丽君, 等. 气凝胶纤维制备及其智能纺织品应用进展[J]. 棉纺织技术, 52(12):91-97.
SHI Wenlu, ZHANG Bo, QU Lijun, et al. Advances in aerogel fiber preparation and its smart textile applications[J]. Cotton Textile Technology, 52(12):91-97.
[5] 朱浩彤, 刘玲伟, 闫铭, 等. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
ZHU Haotong, LIU Lingwei, YAN Ming, et al. Classification, preparation process and application of fibre aerogel: a review[J]. Materials Reports, 2021, 35(23): 23057-23067.
[6] WEI H, XIE X, LI X, et al. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material[J]. Applied Energy, 2016, 178: 616-623.
[7] LIU Z, DING Y, WANG F, et al. Thermal insulation material based on SiO2 aerogel[J]. Construction and Building Materials, 2016, 122: 548-555.
[8] LIU B, GAO M, LIU X, et al. Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J]. ACS Applied Nano Materials, 2019, 2(11): 7299-7310.
[9] GAO B, CAO J, YAO C, et al. High thermally insulating and lightweight Cr2O3-Al2O3 aerogel with rapid-cooling property[J]. Applied Surface Science, 2022.DOI: 10.1016/j.apsusc.2022.153044.
[10] XING S, JI Q, JIAO X, et al. A two-step route to SiO2 nanofiber-reinforced aerogel composites with lightweight and high temperature resistance for thermal insula-tion[J]. ACS Applied Nano Materials, 2023, 6(11): 9939-9948.
[11] ZHANG X, ZHAO X, XUE T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123963.
[12] GONG C, NI J, TIAN C, et al. Research in porous structure of cellulose aerogel made from cellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2021, 172: 573-579.
doi: 10.1016/j.ijbiomac.2021.01.080 pmid: 33454335
[13] ZHANG H, ZHANG G, ZHU H, et al. Multiscale kapok/cellulose aerogels for oil absorption: the study on structure and oil absorption properties[J]. Industrial Crops and Products, 2021.DOI: 10.1016/j.indcrop.2021.113902.
[14] ZHU P, YU Z, SUN H, et al. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting[J]. Advanced Materials, 2024. DOI:10.1002/adma.202306653.
[15] FREITAS P A V, GONZÁLEZ-MARTÍNEZ C, CHIRALT A. Influence of the cellulose purification process on the properties of aerogels obtained from rice straw[J]. Carbohydrate Polymers, 2023.DOI: 10.1016/j.carbpol.2023.120805.
[16] SU G, JIANG P, GUO L, et al. Robust cellulose composite aerogels with enhanced thermal insulation and mechanical properties from cotton waste[J]. Industrial Crops and Products, 2024, 211: 118242.
[17] ZHU G, WANG J, WANG X, et al. Aerogels fabricated from wood-derived functional cellulose nanofibrils for highly efficient separation of microplastics[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(38): 13928-13938.
[18] PEREIRA A L S, FEITOSA J P A, MORAIS J P S, et al. Bacterial cellulose aerogels: influence of oxidation and silanization on mechanical and absorption proper-ties[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2020.116927.
[19] BERA T, MANNA S, SHARMA A K, et al. Repurposing the single-used-plastic for development of hydrophobic aerogels for remediation of oil spill and organic solvents[J]. Science of the Total Environment, 2023. DOI:10.1016/j.scitotenv.2023.166670.
[20] AZANAW A, HAILE A, GIDEON R K. Extraction and characterization of fibers from yucca elephantine plant[J]. Cellulose, 2019, 26: 795-804.
doi: 10.1007/s10570-018-2103-x
[21] ZHANG Z, CAI S, LI Y, et al. High performances of plant fiber reinforced composites-a new insight from hierarchical microstructures[J]. Composites Science and Technology, 2020. DOI:10.1016/j.compscitech.2020.108151.
[22] ZHAO T, XIA W, LI B, et al. A novel eco-friendly solid-state degumming method for extraction of hemp fibers[J]. Journal of Cleaner Production, 2024. DOI:10.1016/j.jclepro.2023.140549.
[23] ZHU J, ZHU Y, YE Y, et al. Superelastic and ultralight aerogel assembled from hemp microfibers[J]. Advanced Functional Materials, 2023.DOI: 10.1002/adfm.202300893.
[24] KULMA A, SKÓRKOWSKA-TELICHOWSKA K, KOSTYN K, et al. New flax producing bioplastic fibers for medical purposes[J]. Industrial Crops and Products, 2015, 68: 80-89.
[25] ESMAEILZADEH M J, RASHIDI A. Evaluation of the disintegration of linen fabric under composting condi-tions[J]. Environmental Science and Pollution Research, 2018, 25: 29070-29077.
[26] LI H, TANG R, DAI J, et al. Recent progress in flax fiber-based functional composites[J]. Advanced Fiber Materials, 2022, 4(2): 171-184.
[27] YANG X, FAN W, WANG H, et al. Recycling of bast textile wastes into high value-added products: a review[J]. Environmental Chemistry Letters, 2022, 20(6): 3747-3763.
[28] LIU H, FAN W, MIAO Y, et al. Closed-loop recycling of colored regenerated cellulose fibers from the dyed cotton textile waste[J]. Cellulose, 2023, 30(4): 2597-2610.
[29] LU L, FAN W, MENG X, et al. Current recycling strategies and high-value utilization of waste cotton[J]. Science of the Total Environment, 2023.DOI: 10.1016/j.scitotenv.2022.158798.
[30] 林世东, 甘胜华, 李红彬, 等. 我国废旧纺织品回收模式及高值化利用方向[J]. 纺织导报, 2017(2): 25-26,28.
LIN Shidong, GAN Shenghua, LI Hongbin, et al. The recycling modes and higher value applications of discarded textiles in china[J]. China Textile Leader, 2017(2): 25-26,28.
[31] LIU J, YANG K, YANG Y, et al. A waste hemp-based biomass carbon aerogel with high fire-resistance[J]. Journal of Applied Polymer Science, 2024. DOI:10.1002/app.55616.
[32] YANG W, DING H, LIU T, et al. Design of intrinsically flame-retardant vanillin-based epoxy resin for thermal-conductive epoxy/graphene aerogel composites[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59341-59351.
[33] ZHANG S, WANG L, FENG J, et al. Fumed silica-derived, ambient dried, and low-cost nanoporous aerogel-like monoliths for thermal insulation[J]. ACS Applied Nano Materials, 2023, 6(12): 10511-10520.
[34] SUN W, FANG Y, WU L, et al. Micron down feather fibers reinforced cellulose composite aerogel with excellent acoustic and thermal insulation[J]. Journal of Porous Materials, 2023, 30(3): 989-997.
[35] 丁伟, 李硕琳, 陈永芳, 等. 纳米纤维素基复合气凝胶的制备及性质研究[J]. 中国皮革, 2022, 51(10): 1-8,12.
DING Wei, LI ShuoLin, CHEN Yongfang, et al. Preparation and characterization of nanocellulose-based composite aerogels[J]. China Leather, 2022, 51(10): 1-8,12.
[36] LIU Z, LIU F, AN J, et al. BN fiber aerogels with high solar reflectivity and thermal insulation for green buildings[J]. Ceramics International, 2024, 50(22): 46589-46599.
[37] ZHANG X, GAO Y, WANG X, et al. A flexible, thermal-insulating, and fire-resistant bagasse-derived cellulose aerogel prepared via a refrigerator freezing combined ambient pressure drying technique[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.155466.
[38] PU H, DING X, CHEN H, et al. Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin[J]. Environmental Technology & Innovation, 2021.DOI: 10.1016/j.eti.2021.101874.
[1] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[2] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[3] 马亮, 俞旭华, 刘文武, 李慈, 方以群, 李俊, 徐佳骏. 气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用[J]. 纺织学报, 2024, 45(07): 181-188.
[4] 高志浩, 宁新, 明津法. 生物质基碳气凝胶及其在储能器件中应用研究进展[J]. 纺织学报, 2024, 45(06): 210-218.
[5] 李久刚, 石玉菲, 刘可帅, 李文斌, 柯贵珍. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(06): 53-58.
[6] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[7] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[8] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[9] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[10] 吕红丽, 罗丽娟, 师建军, 郑振荣, 李红晨. 柔性增强二氧化硅气凝胶的研究进展[J]. 纺织学报, 2023, 44(08): 217-224.
[11] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[12] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[13] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[14] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[15] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!