纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 1-10.doi: 10.13475/j.fzxb.20220408901

• 纤维材料 •    下一篇

超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能

杨其亮1,2, 杨海伟1,2(), 王邓峰3, 李长龙1,2, 张乐乐1, 王宗乾1,2   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽省生态纺织印染制造业创新中心, 安徽 芜湖 241000
    3.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2022-04-28 修回日期:2022-08-29 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 杨海伟 (1991—),男,助教,硕士。主要研究方向为蚕丝纤维的多尺度解构和功能化应用。E-mail:yhwcadillac@163.com
  • 作者简介:杨其亮 (1997—),男,硕士生。主要研究方向为丝素蛋白纤维的功能化利用。
  • 基金资助:
    安徽省重点研究与开发计划项目(202104f06020003);安徽省重点研究与开发计划项目(2022a05020029);安徽省高校协同创新项目(GXXT-2022-027);安徽省纺织工程技术研究中心、安徽省高等学校纺织面料重点实验室联合开放基金资助项目(2021AETKL10);芜湖市科技计划项目(2022jc18);安徽工程大学校级科研项目(KZ42020108);安徽工程大学校级科研项目(Y412021012);国家大学生创新创业训练计划重点项目(202210363002)

Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel

YANG Qiliang1,2, YANG Haiwei1,2(), WANG Dengfeng3, LI Changlong1,2, ZHANG Lele1, WANG Zongqian1,2   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Wuhu, Anhui 241000, China
    3. School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-04-28 Revised:2022-08-29 Published:2023-09-15 Online:2023-10-30

摘要:

为提升丝素蛋白(SF)气凝胶力学弹性,以SF微-纳米纤维(SMNF)为前驱体,通过冷冻干燥和硅烷改性策略成功构筑了超疏水高弹性SMNF气凝胶(简称MS气凝胶),并对其微观结构和力学性能进行测试表征,系统研究了MS气凝胶的吸油性能。结果表明:MS气凝胶的网络骨架由微-纳米纤维组装而成,并具有分级多孔的胞腔结构,这赋予气凝胶超低的密度(5.36 mg/cm3)和超高的孔隙率(99.63%);此外,MS气凝胶还表现出优异的力学性能,在80%纵向压缩应变下的最大应力为15.72 kPa,100次循环压缩后气凝胶保留了81%以上的初始相对高度。能量色散光谱和红外光谱分析证实:硅烷改性后气凝胶的表面形成了硅氧烷网络结构,使其具有超疏水特征(水接触角为150.9°);MS气凝胶对氯仿的吸收能力为188.75 g/g,并具有优良的循环使用性能。

关键词: 丝素蛋白微-纳米纤维, 气凝胶, 硅烷改性, 超弹性, 吸油性能, 力学性能, 疏水性能

Abstract:

Objective Silk fibroin (SF) aerogels prepared by conventional regeneration-dissolution process generally suffer from poor mechanical elasticity, resulting in weak oil absorption performance of the hydrophobically modified SF aerogels. This research aims to prepare highly elastic SF-based aerogels with excellent oil absorption properties for practical applications by using SF micro-nanofibrils (SMNF) aerogels as carriers, following the hydrophobic modification.

Method The SMNF aerogels were fabricated by a freeze-induced assembly process using low-melting solvent liquid-phase exfoliated SMNF as precursors. Subsequently, the SMNF aerogel was hydrophobically modified by a methyltrimethoxysilane (MTMS) chemical vapor deposition strategy. The microstructure, element distribution and mechanical properties of MTMS modified SMNF (MS) aerogel were characterized by scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and universal material testing machine. Meanwhile, the oil absorbency of MS aerogel was systematically studied.

Results The urea/guanidine hydrochloride deep eutectic solvent liquid-phase exfoliated SMNF retained the micro-nanoscale fibril structures of natural silk fibers (Fig.1), facilitating the construction of highly elastic SF aerogels. The resulting MS aerogel was characterized by hierarchical cellular architectures (Fig. 2), which endowed it with low density (5.36 mg/cm3) and high porosity (99.63%). The MS aerogel exhibited high compressi-bility (15.72 kPa at a strain of 80%) and superior fatigue resilience (over 81% relative height retention after 100 cycles) (Fig. 4). The results of energy dispersive spectroscopy and infrared spectroscopy confirmed that the siloxane network structures were formed on the aerogel surface after MTMS modification (Fig. 3), endowing SMNF aerogel with superhydrophobicity (water contact angle of 150.9°) (Fig. 5). Consequently, MS aerogels demonstrated strong absorption capacity for various oil agents with the oil absorption capacity of 84.48-188.75 g/g (Fig. 7). More importantly, owing to the high elasticity and stable skeleton structure, MS aerogel displayed excellent repeatable oil absorption performance (Fig. 8, Fig. 9).

Conclusion Highly elastic and superhydrophobic MS aerogels were fabricated by urea/guanidine hydrochloride low eutectic solvent liquid phase exfoliation, freeze-induced assembly, and MTMS chemical vapor deposition modification. The assembled MS aerogels were characterized by hierarchical fibril networks and hierarchical cellular structures, which endowed MS aerogels with exceptional properties, including low density, high porosity and superelastic performance. Benefiting from the above features, the superelastic and superhydrophobic MS aerogel not only showed strong absorb ability to various oil agents, but also had excellent repeated oil absorption performance. This work provides a reliable approach for the fabrication of highly elastic and superhydrophobic SF aerogels and endows application prospects in oil absorption opportunities.

Key words: silk fibroin micro-nanofibril, aerogel, silicane modification, hyperelasticity, oil absorbency, mechanical property, hydrophobic property

中图分类号: 

  • TS102.3

图1

蚕丝素纤维和SMNF的微观形貌及红外光谱"

图2

MS气凝胶的光学照片和微观形貌"

图3

MS气凝胶的表面元素和化学结构"

图4

MS气凝胶的力学压缩性能"

图5

MS气凝胶的疏水及亲油性能"

图6

MS气凝胶对浮在水面上的正己烷和沉入水中的氯仿的选择性吸附"

图7

MS气凝胶的吸油性能"

图8

不同循环次数MS气凝胶的吸油过程"

图9

重复吸油10次后MS气凝胶的光学照片和SEM照片"

[1] ZHANG X, LEI Y, LI C, et al. Superhydrophobic and multifunctional aerogel enabled by bioinspired salvinia leaf-like structure[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202110830.
[2] LI M, LIU H, LIU J, et al. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly (vinyl alcohol) sponge for selective and versatile oil/water separation[J]. International Journal of Biological Macromolecules, 2021, 192: 169-179.
doi: 10.1016/j.ijbiomac.2021.09.189
[3] 王邓峰, 王宗乾, 范祥雨, 等. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41 (4): 26-32.
WANG Dengfeng, WANG Zongqian, FAN Xiangyu, et al. Study on oil absorbency of nature hollow metaplexis japonica seed hair fibers[J]. Journal of Textile Research, 2020, 41(4): 26-32.
[4] JIANG F, HSIEH Y L. Dual wet and dry resilient cellulose II fibrous aerogel for hydrocarbon-water separation and energy storage applications[J]. ACS Omega, 2018, 3 (3): 3530-3539.
doi: 10.1021/acsomega.8b00144 pmid: 31458604
[5] JING F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014, 2(18): 6337-6342.
doi: 10.1039/C4TA00743C
[6] SUN H, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25 (18): 2554-2560.
doi: 10.1002/adma.v25.18
[7] ZHANG S, TIAN L, CHEN X, et al. Ultralight graphene/carbon nanofibers/carbon nanotubes aerogels with thermal insulating and hot-oil adsorption performance[J]. Journal of Materials Science, 2021, 56 (12): 7409-7419.
doi: 10.1007/s10853-021-05772-x
[8] CAI C, WEI Z, HUANG Y, et al. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127772.
[9] QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202106269.
[10] JIAO Y, WAN C, QIANG T, et al. Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents[J]. Applied Physics A, 2016, 122(7): 1-10.
doi: 10.1007/s00339-015-9525-1
[11] XIE X, ZHENG Z, WANG X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification[J]. ACS Nano, 2021, 15(1): 1048-1058.
doi: 10.1021/acsnano.0c07896 pmid: 33439624
[12] WANG Q, LING S, YAO Q, et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers[J]. ACS Materials Letters, 2020, 2(2): 153-160.
doi: 10.1021/acsmaterialslett.9b00461
[13] LI C, WU J, SHI H, et al. Fiber-based biopolymer processing as a route toward sustainability[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202105196.
[14] JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061.
doi: 10.1038/nature01809
[15] MALEKI H, WHITMORE L, HÜSING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A, 2018, 6 (26): 12598-12612.
doi: 10.1039/c8ta02821d pmid: 30713688
[16] 王宗乾, 杨海伟, 周剑, 等. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41 (4): 9-14.
WANG Zongqian, YANG Haiwei, ZHOU Jian, et al. Effect of urea degumming on mechanical properties of silk fibroin aerogels[J]. Journal of Textile Research, 2020, 41 (4): 9-14.
[17] SHOME A, MOSES J C, RATHER A M, et al. Unconventional and facile fabrication of chemically reactive silk fibroin sponges for environmental remediation[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 24258-24271.
[18] ZHOU J, ZHANG Y, YANG Y, et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation[J]. Applied Surface Science, 2019. DOI: 10.1016/j.apsusc.2019.143762.
[19] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39 (4): 69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J] Journal of Textile Research, 2018, 39 (4): 69-76.
[20] WANG Z, YANG H, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating tex-tiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15726-15736.
[21] MENG Y, SONG F, CHEN H, et al. Composited gels from nature growing scaffold: synthesis, properties, and application[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5498-5507.
[22] TAN X, ZHAO W, MU T. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes[J]. Green Chemistry, 2018, 20(15): 3625-3633.
doi: 10.1039/C8GC01609G
[23] HU Z, YAN S, LI X, et al. Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance[J]. ACS Nano, 2021, 15(5): 8171-8183.
doi: 10.1021/acsnano.1c00346 pmid: 33848124
[24] LI L, YANG H, LI X, et al. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2020.117214.
[25] YANG H, WANG Z, WANG M, et al. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process[J]. Polymers, 2020. DOI:10.1016/j.polymer.2020.122298.
[26] ZHANG C, ZHANG Y, SHAO H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3349-3358.
[27] CAO L, SI Y, WU Y, et al. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption[J]. Nanoscale, 2019, 11(5): 2289-2298.
doi: 10.1039/c8nr09288e pmid: 30657513
[28] ZHONG J, LIU Y, REN J, et al. Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies[J]. ACS Biomaterials Science & Engineering, 2019, 5 (7): 3161-3183.
[29] GONG X, WANG Y, ZENG H, et al. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly (vinyl alcohol) aerogels as recyclable absorbents for oil-water separation[J]. ACS Sustainable Chemi-stry & Engineering, 2019, 7 (13): 11118-11128.
[30] DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908269.
[31] CHEN Y, YU Z, YE Y, et al. Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing[J]. ACS Nano, 2021, 15(1): 1869-1879.
doi: 10.1021/acsnano.0c10577 pmid: 33448788
[32] BANDAR Abadi M, WEISSING R, WILHELM M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (29): 34996-35007.
[33] MULYADI A, ZHANG Z, DENG Y. Fluorine-free oil absorbents made from cellulose nanofibril aerogels[J]. ACS Applied Materials & Interfaces, 2016, 8 (4): 2732-2740.
[34] DONG T, TIAN N, XU B, et al. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2022.128290.
[35] 尚倩倩, 胡云, 刘承果, 等. 超疏水纤维素复合气凝胶的制备及其油水分离[J]. 林产业工程学报, 2019, 4 (3): 86-92.
SHANG Qianqian, HU Yun, LIU Chengguo, et al. Fabrication of superhydrophobic cellulose composite aerogels for oil /water separation[J]. Journal of Forestry Engineering, 2019, 4 (3): 86-92.
[1] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
[2] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[3] 吕红丽, 罗丽娟, 师建军, 郑振荣, 李红晨. 柔性增强二氧化硅气凝胶的研究进展[J]. 纺织学报, 2023, 44(08): 217-224.
[4] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[5] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[6] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[7] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[8] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[9] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[10] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[11] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[12] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[13] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[14] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[15] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!