纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 42-48.doi: 10.13475/j.fzxb.20211006107

• 纤维材料 • 上一篇    下一篇

Lyocell纤维性能表征及其对比分析

黄伟1,2,3, 张嘉煜1, 张东1, 程春祖1, 李婷1,2,3(), 吴伟4   

  1. 1.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    2.东华大学 材料科学与工程学院, 上海 201620
    3.东华大学 纤维材料改性国家重点实验室, 上海 201620
    4.东纶科技实业有限公司, 河北 廊坊 065001
  • 收稿日期:2021-10-26 修回日期:2022-05-17 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 李婷(1984—),女,工程师,硕士。主要研究方向为生物基纤维及其工程化。E-mail:liting@cta.com.cn
  • 作者简介:黄伟(1989—),男,工程师,硕士。主要研究方向为再生纤维素纤维的制备。

Property characterization and comparative analysis of Lyocell fibers

HUANG Wei1,2,3, ZHANG Jiayu1, ZHANG Dong1, CHENG Chunzu1, LI Ting1,2,3(), WU Wei4   

  1. 1. State Key Laboratory of Bio-based Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    4. Eastex Industrial Science and Technology Co., Ltd., Langfang, Hebei 065001, China
  • Received:2021-10-26 Revised:2022-05-17 Published:2023-03-15 Online:2023-04-14

摘要:

为探究不同企业Lyocell纤维性能及产品质量差异,随机选取国内外9家不同企业的Lyocell纤维,对其表观形貌、力学性能、磨损性能、结晶度、取向度、并丝率等进行深入表征与对比分析。结果表明:国外企业生产的Lyocell纤维表观形貌规整且光滑,横切面呈圆形,其湿磨损值为8.76 s,结晶度为78.8%,原纤化程度较低,并丝率较低(2.591%),纤维断裂强度为3.91 cN/dtex,断裂伸长率为9.79%,纤维及成纱强力高、品质优异,在下游应用市场中具有较高的认可度;因工艺路线及后处理工艺的差异,国内企业生产的Lyocell纤维品质较国外的有一定差距,未来应在微观形貌、并丝率、光泽性、可纺性及品牌推广等方面继续优化,进一步提高其市场占有率。

关键词: Lyocell纤维, 力学性能, 并丝率, 结晶度, 磨损性能

Abstract:

Objective A varity of Lyocell fibers in the market are different in the product quality and spinnability. In order to understand the performance and quality differences of different Lyocell fibers and the analysis of the causes, this research systematically studied the differences of Lyocell fibers in terms of morphological structure, mechanical properties, wear properties, crystallinity, orientation and filament ratio, and analyzed the reasons for the differences. This paper provided suggestions for the subsequent improvement and development direction of domestic Lyocell fibers.

Method Lyocell fibers from 9 different manufacturers were selected for characterization and comparative analysis on the apparent morphology, mechanical properties, frictional properties, crystallinity, orientation and filament ratio. Due to the differences in the process route and post-treatment technology, the quality of domestic Lyocell fibers has a certain gap compared with Lyocell fibers prepared by major international manufacturers. The characterization instruments used in this research includes SEM,XRD,microscope,fiber wet tribometer and fiber strength tester.

Results Except for domestic Lyocell fibers, filament cross sections are approximately circular with certain defects and creases on the surface and uneven fiber diameter thickness (Fig.2). The 1# and 3# fibers have a small amount of hollow structure, and the 7#fibers have a large amount of hollow structure. The mechanical properties of all Lyocell fibers from different manufacturers have little difference in dry breaking strength ranging from 3.6 to 4.0 cN/dtex, elongation at break ranging from 7% to 10%, and initial elastic modulus ranging from 60 to 70 cN/dtex (Tab.3). The polymerization degree of the 1# fiber is low (Tab.3). When the capacity of the spinneret component is the same, the cellulose concentration in the spinning stock solution of the 1# fiber is higher, which is more conducive to the increase of production line output and reduce the fiber production cost. The rotation time of friction axis of 1# Lyocell fiber is 8.76 s. The rotation time of friction of domestic Lyocell fiber is short and the degree of fibrillation is relatively high (Tab.4). There is no significant difference in the major diffraction peaks of all Lyocell fibers, and the diffraction peaks of 1# and 2# fibers are significantly lower than those of other fibers (Fig.3). Most of the domestic Lyocell fibers have (040) crystal planes near 2θ of 35.5°, indicating that there are a few quasicrystals in amorphous regions in the fibers. The crystallinity of domestic Lyocell fibers is higher than that of foreign countries on the whole, and the orientation of Lyocell fibers of different enterprises has little difference (Tab.5).

Conclusion The morphological structure, degree of polymerization, mechanical properties, wear properties, crystallinity, orientation and filament ratio of Lyocell fibers from sampling suppliers were characterized and compared, and the following conclusions were obtained. The Lyocell fiber prepared by major international manufacturers seems to have regular and smooth appearance and regular round cross section, with wet wear loss of 8.76 s, crystallinity of 78.8%, low degree of fibrination, low filament ratio (2.591%), fiber breaking strength of 3.91 cN/dtex, elongation at break of 9.79%. With high yarn strength and excellent fiber quality, Lyocell fiber downstream manufacturers have a high degree of recognition. Due to the difference in processing route and post-treatment technology, the quality of domestic Lyocell fiber is better than that of foreign Lyocell fiber. Domestic manufacturers should continue to optimize the fiber microstructure, gloss, spinnability and brand promotion to further improve the market share of domestic Lyocell fiber. In the future, the domestic manufacturers should continue to optimize the micro-morphology, filament ratio, gloss, spinnability and brand promotion, so as to further improve the market share of domestic Lyocell fiber.

Key words: Lyocell fiber, mechanical property, unseperated fiber ratio, crystalline, wear performance

中图分类号: 

  • TS109.9

表1

Lyocell纤维的规格和制备方法"

纤维编号 线密度/dtex 制备方法 产地
1# 1.30 湿法溶胀 国外公司
2# 1.30 湿法溶胀 国外公司
3# 1.33 湿法溶胀 国内公司
4# 1.30 湿法溶胀 国内公司
5# 1.30 湿法溶胀 国内公司
6# 1.33 双螺杆法 国内公司
7# 1.33 干法溶胀 国内公司
8# 1.30 湿法溶胀 国内公司
9# 1.30 干湿法 国内公司

图1

湿磨损测试示意图"

图2

Lyocell纤维的形态结构"

表2

Lyocell纤维的并丝率"

样品编号 并丝率/%
1# 2.591
2# 16.670
3# 4.230
4# 3.410
5# 7.090
6# 22.486
7# 5.340
8# 11.520
9# 4.920

表3

Lyocell纤维力学性能"

样品
编号
干态 湿态
初始模量/
( cN.dtex-1)
断裂强度/
( cN.dtex-1)
断裂
伸长率/
%
断裂强度/
( cN.dtex-1)
断裂
伸长率/
%
聚合
1# 67.40 3.91 9.79 3.36 18.46 465.24
2# 66.46 3.45 7.33 3.31 16.88 394.41
3# 55.76 3.33 8.18 3.3 17.47 526.93
4# 76.09 3.91 8.77 2.97 17.31 530.51
5# 71.34 3.61 8.39 3.14 16.73 572.41
6# 109.42 4.83 7.13 2.75 12.77 489.83
7# 65.27 3.59 8.56 3.55 18.28 581.13
8# 64.70 3.81 9.48 3.49 17.05 566.04
9# 67.01 3.93 9.47 3.47 19.77 534.00

表4

Lyocell纤维的湿磨损性能"

样品编号 摩擦轴旋转时间/s
1# 8.76
2# 4.80
3# 7.48
4# 8.37
5# 7.30
6# 7.32
7# 7.81
8# 7.93
9# 7.87

图3

Lyocell纤维XRD谱图"

表5

Lyocell纤维的结晶度及双折射率"

样品编号 结晶度/% 双折射率Δn
1# 78.8 0.064 8
2# 79.0 0.062 6
3# 81.5 0.062 2
4# 80.9 0.064 1
5# 80.6 0.063 0
6# 82.0 0.069 7
7# 81.3 0.062 5
8# 82.3 0.063 9
9# 79.6 0.065 0
[1] 周立明. Lyocell纤维的原纤化[J]. 广西纺织科技, 1998 (4): 45-48.
ZHOU Liming. Fibrillation of Lyocell fiber[J]. Guangxi Textile Science and Technology, 1998 (4): 45-48.
[2] 张瑞文, 王再学. Lyocell纤维-溶剂法再生纤维素纤维[J]. 河南纺织高等专科学校学报, 2006, 18(4): 4-6.
ZHANG Ruiwen, WANG Zaixue. Lyocell fiber :a solvent spun cellulose fiber[J]. Journal of Henan Textile College, 2006, 18(4): 4-6.
[3] 梁高勇, 张宏. Lyocell纤维原纤化问题的探讨[J]. 上海纺织科技, 1999, 27(2): 57-59.
LIANG Gaoyong, ZHANG Hong. Discussion on fibrillation of Lyocell fiber[J]. Shanghai Textile Science & Technology, 1999, 27(2): 57-59.
[4] 张耀鹏. NMMO法纤维素膜及其成形机理的研究[D]. 上海: 东华大学, 2002: 6-7.
ZHANG Yaopeng. Preparation and formation mechanism of cellulose membranes prepared from NMMO solu-tion[D]. Shanghai: Donghua University, 2002: 6-7.
[5] 王丽娟. 不同取代度纤维素苯甲酸酯负载金属纳米簇杂化膜的制备与表征及在苯加氢中的催化性能[D]. 武汉: 中南民族大学, 2012: 4-5.
WANG Lijuan. Preparation and characterization of cellulose benzoate supported metal nanocluster hybrid membranes with different degrees of substitution and their catalytic performance in the hydrogenation of benzene[D]. Wuhan: South-Central University for Nationalities, 2012: 4-5.
[6] 习月, 马金霞. 纤维素溶解重要影响因素及其研究进展[J]. 纤维素科学与技术, 2020, 28(4): 46-55.
XI Yue, MA Jinxia. Important factors affecting cellulose dissolution and its research progress[J]. Journal of Cellulose Science and Technology, 2020, 28(4): 46-55.
[7] 赵庆章. Lyocell纤维生产工艺及原理[M]. 北京: 中国纺织出版社, 2020: 48-49.
ZHAO Qingzhang. Production process and principle of Lyocell fiber[M]. Beijing: China Textile & Apparel Press, 2020: 48-49.
[8] 刁春利. 涤纶纤维梳理典型问题控制措施[J]. 辽东学院学报(自然科学版), 2018, 25(2): 95-99.
DIAO Chunli. Control measures for typical problems of polyester fiber carding[J]. Journal of Eastern Liaoning University (Natural Science Edition), 2018, 25(2): 95-99.
[9] 冷欣荣, 钱自强. 捻线丝并丝工艺的应用和改进[J]. 江苏丝绸, 2013 (3): 35-38.
LENG Xinrong, QIAN Ziqiang. Application and improvement of twisted wire and silk process[J]. Jiangsu Silk, 2013 (3): 35-38.
[10] 杨峰, 李静, 张明敬. 半连续纺粘胶长丝油剂试验分析[J]. 人造纤维, 2005, 35(3): 11-12.
YANG Feng, LI Jing, ZHANG Mingjing. Test and analysis of finishing agent for semi-continuous spun filament[J]. Artificial Fiber, 2005, 35(3): 11-12.
[11] 黄伟, 程春祖, 张嘉煜, 等. 高原纤化Lyocell纤维的制备及其性能[J]. 纺织学报, 2021, 42(6): 41-45.
HUANG Wei, CHENG Chunzu, ZHANG Jiayu, et al. Preparation and characterization of high fibrillation Lyocell fiber[J]. Journal of Textile Research, 2021, 42(6): 41-45.
[12] 潘忆乐, 钱丽颖, 徐纪刚, 等. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33.
PAN Yile, QIAN Liying, XU Jigang, et al. Analysis on factors influencing solution of Lyocell fiber spinning pulp[J]. Journal of Textile Research, 2021, 42(10): 27-33.
[13] 田耀鑫. 轮胎帘子线用Lyocell纤维制备技术的初探[D]. 上海: 东华大学, 2008: 1-5.
TIAN Yaoxin. Preliminary study on preparation technology of Lyocell fiber for tire cord[D]. Shanghai: Donghua University, 2008: 1-5.
[14] HERMANS P H, WEIDINGER A. Quantitative investigation of the X-ray diffraction picture of some typical rayon specimens[J]. Textile Research Journal, 1961, 31(6): 559-570.
[15] 刘治刚, 高艳, 金华, 等. XRD分峰法测定天然纤维素结晶度的研究[J]. 中国测试, 2015, 41(2): 38-41.
LIU Zhigang, GAO Yan, JIN Hua, et al. Study on natural cellulose crystallinity determined by the technology of XRD peak separation[J]. China Measurement and Test, 2015, 41(2): 38-41.
[16] 魏孟媛, 杨革生, 田耀鑫, 等. 初生Lyocell纤维结晶结构的形成过程[J]. 东华大学学报(自然科学版), 2008(5): 517-521,533.
WEI Mengyuan, YANG Gesheng, TIAN Yaoxin, et al. Formation of crystal structure of never dried Lyocell fiber[J]. Journal of Donghua University(Natural Science), 2008(5): 517-521,533.
[17] 翟黎莉. Lyocell织物原纤化的研究及评价[D]. 青岛: 青岛大学, 2006: 5-13.
ZHAI Lili. Study and evaluation of Lyocell fabric fibrinization[D]. Qingdao: Qingdao University, 2006: 5-13.
[18] 潘志娟. 纤维材料近代测试技术[M]. 北京: 中国纺织出版社, 2005: 166-167.
PAN Zhijuan. Modern testing techniques for fiber materials[M]. Beijing: China Textile & Apparel Press, 2005: 166-167.
[1] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[2] 李婷, 李文瑞, 张晨曦, 迟克栋, 张明明, 刘海辉, 黄庆. 高速纺丝工艺下Lyocell纤维结构对其原纤化的影响[J]. 纺织学报, 2023, 44(02): 11-18.
[3] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[4] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[5] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[6] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[7] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[8] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[9] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[10] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[11] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[12] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[13] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[14] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[15] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!