纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 161-167.doi: 10.13475/j.fzxb.20220201401

• 染整与化学品 • 上一篇    下一篇

磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能

蒋之铭1,2,3,4, 张超1,2,3,4, 张晨曦1,2,3,4, 朱平1,2,3,4()   

  1. 1.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    2.青岛大学 纺织服装学院, 山东 青岛 266071
    3.青岛大学 新型防火阻燃材料开发与应用国家地方联合工程研究中心, 山东 青岛 266071
    4.省部共建生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2022-02-11 修回日期:2022-12-02 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 朱平
  • 作者简介:蒋之铭(1989—),男,副教授,博士。主要研究方向为纤维改性及功能纺织品。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309001)

Preparation and properties of flame-retardant viscose fabrics modified with phosphated polyethyleneimine

JIANG Zhiming1,2,3,4, ZHANG Chao1,2,3,4, ZHANG Chenxi1,2,3,4, ZHU Ping1,2,3,4()   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    3. National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Qingdao, Shandong 266071, China
    4. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, Shandong 266071, China
  • Received:2022-02-11 Revised:2022-12-02 Published:2023-06-15 Online:2023-07-20
  • Contact: ZHU Ping

摘要:

为降低多元羧酸交联剂的强酸性对阻燃粘胶织物的强力损伤,以多氨基磷酸酯化聚乙烯亚胺(BPEI-DP)为阻燃剂, 在1,2,3,4-丁烷四羧酸(BTCA)的交联作用下得到阻燃粘胶织物,研究了其表面化学组成、阻燃性能、热降解稳定性能和热释放行为,分析了BPEI-DP/BTCA体系对粘胶织物力学性能的影响。结果表明:阻燃粘胶织物的极限氧指数(LOI)提升至28.9%,垂直燃烧测试中阻燃织物离火自熄,无续燃和阴燃现象,损毁长度为9.9 cm; 相比于纯粘胶织物,阻燃粘胶织物的成炭性显著提升,热释放明显降低,最大热释放速率下降了34%;其耐水洗性能与N-羟甲基-3-(二甲氧基膦酰基)丙酰胺阻燃粘胶织物相当,20次标准水洗后LOI值从28.9%下降至24.9%;该阻燃体系有效保留了粘胶织物的断裂强力,保留率可达70%左右,为高品质阻燃纺织品的设计制备提供了思路。

关键词: 粘胶织物, 磷酸酯化聚乙烯亚胺, 1,2,3,4-丁烷四羧酸, 阻燃整理, 力学性能

Abstract:

Objective As one of the most important regenerated cellulose materials, viscose fibers are easily flammable and it has potential threat to human lives and properties. Researches show that viscose textiles can obtain flame retardancy by flame-retardant additives and finishing. Compared with flame-retardant additives, textile finishing is easy to operate. 1,2,3,4-Butane tetracarboxylic acid (BTCA), as a common cross-linker, has been widely applied to prepare functional cellulose textiles. However, its highly acidic condition may cause big strength loss of viscose fabrics. It is necessary to find an efficient way to reduce strength loss of flame-retardant viscose fabrics cross-linked with BTCA.
Method A multi-amino phosphated polyethyleneimine (BPEI-DP) was synthesized through simple Atherton-Todd reaction and applied to prepare flame-retardant viscose fabric crosslinking with BTCA. The design of BPEI-DP can decrease the acidic condition of BTCA and flame-retardant viscose fabric with low strength loss was achieved. Also, the BTCA crosslinking can improved the washing durability of flame-retardant viscose fabric. The flame retardancy, heat release, thermal stability, washing durability and mechanical properties were investigated.
Results The limiting oxygen index (LOI) value of the viscose fabric was found to increase to 28.9% after finishing with BPEI-DP and BTCA, and the treated fabric presented self-extinguishing behavior with no afterflame/aftergrow appearance and damage length of 9.9 cm in the vertical burning test (Fig. 2 and Tab. 1). The viscose fiber becomes rougher after flame-retardant finishing and some additional characteristic absorption peaks were appeared on the treated viscose fabric (Fig. 3 and Fig. 4), which indicates that flame retardancy was successfully deposited onto the viscose fibers. BPEI-DP/BTCA flame-retardant system showed significantly improvement in the carbon-forming ability of viscose fabric. The appearance of flame-retardant fiber was well maintained after combustion (Fig. 6). 40.0% and 14.8% of char residues were maintained at 800 oC under N2and air atmosphere, respectively(Fig. 7 and Tab. 2). From cone calorimetry test (CCT), it is found that the with maximum heat release rate(pHRR) was reduced by 34% from 284 kW/m2 to 189 kW/m2 (Fig. 8 and Tab. 3). The washing resistance of BPEI-DP/BTCA treated viscose fabric was comparable to that of Pyrovatex CP. LOI value has slight reduction along with the increase of washing cycles. After 20 standard washing cycles, LOI value decreased from 28.9% to 24.9%, which is much higher than control viscose fabric (Fig. 9). This flame-retardant finishing system effectively maintained the strength of flame retardant viscose fabric. The breaking forces in the warp and weft direction reduced from (406±18) N to (284±13) N and (254±6) N to (168±11) N, respectively. Compared with control viscose fabric, the strength retention rate could reach about 70% and the whiteness has a significant reduction from (77.6±0.3)% to (30.1±0.5)% after flame-retardant finishing (Tab. 4).
Conclusion This study provides ideas for the design and preparation of flame-retardant cellulose fabric with low strength loss. BPEI-DP can not only render viscose fabric with good flame retardancy through improving the char-forming capacity, but also reduce the strength loss of viscose fabric crosslinking with BTCA by decreasing its acidic condition. However, the washing durability of BPEI-DP/BTCA treated viscose fabric is unsatisfactory and this finishing system has bad effect on the whiteness of viscose fabric. Therefore, more efficient and friendly flame-retardant system need to be developed to improve the washing durability and inherent properties of flame-retardant fabric.

Key words: viscose fabric, phosphated polyethyleneimine, 1,2,3,4-butane tetracarboxylic acid, flame-retardant finishing, mechanical property

中图分类号: 

  • TS195.5

图1

磷酸酯化聚乙烯亚胺的化学结构"

图2

不同质量浓度BPEI-DP阻燃粘胶织物的垂直燃烧照片"

表1

不同质量浓度BPEI-DP阻燃粘胶织物的LOI值和垂直燃烧测试数据"

BPEI-DP
质量浓度/
(g·L-1)
负载量/
%
LOI值/
%
续燃时
间/s
阴燃时
间/s
损毁长
度/cm
0 0 21.0 18.1 50.0 ≥30.0
100 4.3 23.2 3.6 0 ≥30.0
200 9.1 24.1 1.5 0 ≥30.0
300 15.0 25.9 0 0 24.7
400 19.7 27.2 0 0 23.1
500 23.6 28.9 0 0 9.9

图3

原粘胶织物和阻燃粘胶织物的红外光谱图"

图4

原粘胶织物和阻燃粘胶织物的扫描电镜照片(×2 000)"

图5

阻燃粘胶织物残炭的红外光谱图"

图6

阻燃粘胶织物残炭的扫描电镜照片"

图7

阻燃整理前后粘胶织物在氮气和空气气氛中的TG和DTG曲线"

表2

阻燃整理前后粘胶织物的热重分析数据"

样品名称 T5%/℃ Tmax/℃ 残炭量/%
Tmax 800 ℃时
氮气 空气 氮气 空气 氮气 空气 氮气 空气
原粘胶织物 262 259 340 326 45.0 47.5 18.8
阻燃粘胶
织物
167 214 270 269 74.5 76.7 40.0 14.8

图8

原粘胶织物和阻燃粘胶织物的HRR与THR曲线"

表3

锥形量热测试数据"

样品名称 pHRR/
(kW·m-2)
THR/
(MJ·m-2)
Av-EHC/
(MJ·kg-1)
CO2与CO
质量比/
(kg·kg-1)
原粘胶织物 284 5.9 13.2 14.8
阻燃粘胶织物 189 5.7 11.2 9.9

图9

不同水洗次数后BPEI-DP/BTCA和Pyrovatex CP阻燃粘胶织物的LOI值"

表4

原粘胶织物和阻燃粘胶织物的断裂强力与白度"

样品名称 断裂强力/N 白度/%
经向 纬向
原粘胶织物 406±18 254±6 77.6±0.3
阻燃粘胶织物 284±13 168±11 30.1±0.5
[1] 于志财, 刘金如, 何华玲, 等. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(9): 180-186.
YU Zhicai, LIU Jinru, HE Hualing, et al. Research and application progress in fire retardant fabric based on polymeric hydrogel[J]. Journal of Textile Research, 2021, 42(9): 180-186.
[2] JU Z Y, YE Y, ZOU R Y, et al. Synthesis and thermal stability of a novel phosphorus-nitrogen containing intumescent flame retardant[J]. Chinese Chemical Letters, 2008, 19(3): 277-278.
doi: 10.1016/j.cclet.2007.12.022
[3] 丁辰, 刘晓辉, 任元林. 纤维素纤维织物阻燃研究进展[J]. 人造纤维, 2017, 47(5): 27-31.
DING Chen, LIU Xiaohui, REN Yuanlin. Research progress of flame-retardant cellulose fiber fabrics[J]. Artificial Fibre, 2017, 47(5): 27-31.
[4] JIANG Z M, XU D H, MA X B, et al. Facile synthesis of novel reactive phosphoramidate siloxane and application to flame retardant cellulose fabrics[J]. Cellulose, 2019, 26(9): 5783-5796.
doi: 10.1007/s10570-019-02465-2
[5] 张美静, 李文霞, 赵非祥. 棉用磷系无醛耐久阻燃剂的制备与应用[J]. 印染助剂, 2016, 33(1): 7-12.
ZHANG Meijing, LI Wenxia, ZHAO Feixiang. Preparation and application of durable non-formaldehyde flame retardants for cotton fabric[J]. Textile Auxiliaries, 2016, 33(1): 7-12.
[6] 张亚光, 李文霞, 姜鹏, 等. 棉用耐久型无醛阻燃剂的制备及应用[J]. 纺织学报, 2013, 34(3): 76-81.
ZHANG Yaguang, LI Wenxia, JIANG Peng, et al. Preparation and application of durable non-formaldehyde flame retardants for cotton[J]. Journal of Textile Research, 2013, 34(3): 76-81.
[7] YANG H, YANG C Q. Nonformaldehyde flame retardant finishing of the Nomex/cotton blend fabric using a hydroxy-functional organophosphorus oligomer[J]. Journal of Fire Sciences, 2007, 25(5): 425-446.
doi: 10.1177/0734904107078069
[8] ZHANG C, JIANG Z M, ZHU S T, et al. Eco-friendly and efficient flame-retardant cotton fabric based on a multi-hydroxyl hyperbranched phosphoramidate[J]. Cellulose, 2021, 28(3): 1857-1872.
doi: 10.1007/s10570-020-03645-1
[9] MOHSIN M, AHMAD S W, KHATRI A, et al. Performance enhancement of fire retardant finish with environment friendly bio cross-linker for cotton[J]. Journal of Cleaner Production, 2013, 51: 191-195.
doi: 10.1016/j.jclepro.2013.01.031
[10] 张超, 蒋之铭, 朱少彤, 等. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(7): 39-45.
ZHANG Chao, JIANG Zhiming, ZHU Shaotong, et al. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics[J]. Journal of Textile Research, 2021, 42(7): 39-45.
[11] ZHANG C X, ZHANG C, JIANG Z M, et al. Design and preparation of flame-retardant cellulose fabric with low strength loss using polycarboxylic acid as cross-linker[J]. Industrial Crops & Products, 2022. DOI: 10.1016/j.indcrop.2022.114738.
doi: 10.1016/j.indcrop.2022.114738
[12] GUAN J P, YANG C Q, CHEN G Q. Formaldehyde-free flame retardant finishing of silk using a hydroxyl-functional organophosphorus oligomer[J]. Polymer Degradation and Stability, 2009, 94(3): 450-455.
doi: 10.1016/j.polymdegradstab.2008.10.024
[13] ZHANG Q H, CHEN G Q, XING T L. Silk flame retardant finish by ternary silica sol containing boron and nitrogen[J]. Applied Surface Science, 2017, 421: 52-60.
doi: 10.1016/j.apsusc.2017.01.283
[14] WAN C, LIU M, TIAN P, et al. Renewable vitamin B5 reactive N-P flame retardant endows cotton with excellent fire resistance and durability[J]. Cellulose, 2020, 27(3): 1745-1761.
doi: 10.1007/s10570-019-02886-z
[15] JIANG Z M, LI H, HE Y W, et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane[J]. Applied Surface Science, 2019, 479: 765-775.
doi: 10.1016/j.apsusc.2019.02.159
[16] XU D H, GAO Z Y, XU B, et al. A facile and effective flame-retardant coating for cotton fabric with α-aminodiphosphonate siloxane[J]. Polymer Degradation and Stability, 2020. DOI: 10.1016/j.polymdegradstab.2020.109312.
doi: 10.1016/j.polymdegradstab.2020.109312
[17] SRICHARUSSIN W, RYO-AREE W, INTASEN W, et al. Effect of boric acid and BTCA on tensile strength loss of finished cotton fabrics[J]. Textile Research Journal, 2004, 74(6): 475-480.
doi: 10.1177/004051750407400602
[18] KE G Z, XIAO Z H, JIN X Y, et al. Wrinkle recovery angle enhancement and tensile strength loss of 1,2,3,4-butanetetracarboxylic acid finished lyocell fabrics[J]. Textile Research Journal, 2020, 90(17/18): 2097-2108.
doi: 10.1177/0040517520912035
[1] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[2] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[3] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[4] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[5] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[6] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[7] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[8] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[9] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[10] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[11] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[12] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[13] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[14] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[15] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!