纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 126-136.doi: 10.13475/j.fzxb.20241004201

• 纺织工程 • 上一篇    下一篇

层数与铺层方式对多层芳纶平纹织物抗侵彻性能的影响

李欣田1, 周玄1, 王展翾1, 杜忠华1,2, 徐立志1()   

  1. 1.南京理工大学 机械工程学院, 江苏 南京 210094
    2.沈阳理工大学 装备工程学院, 辽宁 沈阳 110158
  • 收稿日期:2024-10-21 修回日期:2025-08-06 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 徐立志(1990—),男,副教授,博士。主要研究方向为高效毁伤与防护技术。E-mail:xulznjust@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(12202207);江苏省自然科学基金青年基金项目(BK20220968)

Influence of layer number and layup mode on anti-penetration performance of multi-layer aramid plain woven fabric

LI Xintian1, ZHOU Xuan1, WANG Zhanhuan1, DU Zhonghua1,2, XU Lizhi1()   

  1. 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
    2. School of Equipment Engineering, Shenyang Ligong University, Shenyang, Liaoning 110158, China
  • Received:2024-10-21 Revised:2025-08-06 Published:2025-11-15 Online:2025-11-15

摘要:

为探究多层芳纶平纹织物铺层对破坏模式的影响机制,以芳纶平纹机织物为研究对象,用7.62 mm手枪子弹为被防护对象,采用四周夹紧方式,设置单层、三层、五层3种常规铺层织物靶板和五层30°间隔铺层([0°/30°/60°/90°/120°])织物靶板,通过弹道试验和有限元仿真探究了织物层数和铺层方式对其能量吸收水平的影响。结果表明:在常规铺层织物靶板中,随着层数的增加,吸能水平和吸能效率均呈现增长趋势,五层靶板吸能水平较三层靶板和单层靶板分别高45.49%和472.82%;三层靶板比吸能较单层靶板高14.63%,五层靶板比吸能较三层靶板高3.0%;单层靶板缺少层间摩擦作用,吸能效率与三层、五层靶板相差较大。将五层靶板采用30°间隔铺层后,面内应力波传播方向发生变化,靶板较难发生破坏,与弹丸的接触时间延长,从而表现出更强的抗侵彻能力,其吸收能量较常规铺层五层靶板提升12.47%。

关键词: 芳纶平纹织物, 有限元仿真, 弹道试验, 多层织物, 铺层方式, 抗侵彻性能

Abstract:

Objective One of the methods to improve the protection ability of bulletproof vests is to optimize flexible fabrics. Therefore, it is important to understand the energy absorption of fabrics and optimize the protection structure at the same areal density. In previous studies on multi-layer fabrics, the focus was mostly on simple layering method. Building on the exploration of the energy absorption law of multi-layer fabrics, this study further investigates the influence of different angular layering methods on the energy absorption of multi-layer fabrics.
Method Aramid plain woven fabric (Kevlar®29) was taken as the research object, and 7.62 mm pistol bullets were used to impact the target plate at a velocity of (310±5) m/s. The four-week clamping method was employed to set up the fabric target boards as conventional single-layer, three-layer, and five-layer fabric targets, as well as a five-layer fabric target with 30° interlayer intervals ([0°/30°/60°/90°/120°]), designated as FP1, FP3, FP5, and FP5-30, respectively. The influence of the number of fabric layers and layup modes on the energy absorption level was explored through ballistic tests and finite element simulations.
Results After the projectile penetrated the targets, the damage morphologies of the front and rear layers of the target plate were different. As the position was further back, yarn slippage gradually replaced yarn breakage, and became the main damage mode. The main damage of the front fabric showed severe yarn breakage at the bullet hole, accompanied by the occurrence of yarn slippage.+++By observing the fracture section of the yarn under an optical microscope, it was found that the fiber fracture exhibited obvious local necking and a conical fracture segment, indicating that the yarn failure was mainly dominated by tensile damage. The damage of the fabric on the rear side of the target plate showed no yarn breakage at the bullet hole, but yarn slippage was the main damage mode. During the penetration process, the three target plates demonstrated different magnitudes of acceleration and penetration times. During the penetration of the three target plates FP5, FP3, and FP1, the projectile acceleration became 0 at 60 μs, 56.5 μs, and 54.5 μs, respectively. Comparing the five-layer target plate FP5 to the five-layer target plate FP5-30 with spiral layup, it was found that when the FP5 target plate started to fail, the FP5-30 target plate still maintained the integrity. At 30 μs, the FP5-30 target plate started to fail while the FP5 target plate had been severely damaged. At 34 μs, the damage to the FP5 target plate continued to worsen, while the FP5-30 target plate became severely damaged. However, the damage diameter of the FP5 target plate is larger than that of the FP5-30 target plate. Because of the change of the layup angle, the response range of in-plane stress waves in the fabric is altered. All fabric layers in FP5 exhibit similar rhombic response regions, while the in-plane stress waves in the middle layers of FP5-30 (i.e., the 2nd, 3rd, and 4th layers) propagate outward in a nearly circular wave pattern. Eventually, the FP5 target plate presents a pyramid shape with the bottom shrinking inward, whereas the FP5-30 target plate shows a pyramid shape with the bottom expanding outward.
Conclusion The energy absorbed by the FP5 target plate is 45.49% and 472.82% higher than that of the FP3 target plate and the FP1 target plate, respectively. The specific energy absorption per unit areal density of the FP3 target plate is 14.63% higher than that of the FP1 target plate, and the specific energy absorption of the FP5 target plate is 3.0% higher than that of the FP3 target plate. The layup mode of the target plate has a great influence on the anti-penetration ability of the fabric target plate. Because of the change in the layup angle, the propagation direction of in-plane stress waves changes. Therefore, the FP5-30 target plate is more difficult to be damaged and thus shows stronger anti-penetration ability. The energy absorbed by the PF5-30 target plate is 12.47% higher than that by the FP5 target plate.

Key words: aramid plain woven fabric, finite element simulation, ballistic test, multi-layered fabric, layup mode, anti-penetration performance

中图分类号: 

  • TB332

图1

试验场地布置"

图2

材料特性试验结果"

图3

织物破坏情况"

图4

单根纱线建模示意图"

表1

纱线材料参数"

参数 密度ρ/
(g·cm-3)
弹性模量/GPa 泊松比 剪切模量/MPa 纤维
方向拉伸
强度XT/MPa
1方向E1 2方向E2 3方向E3 υ12 υ13 υ23 1-2方向
G12
1-3方向
G13
2-3方向
G23
介观区域
(纱线)
1.44 90.179 9.017 9 9.017 9 0.3 0.3 0.3 901.79 901.79 901.79 2 485.33
宏观区域 1.44 90.179 90.179 9.017 9 0.3 0.3 0.3 901.79 901.79 901.79 2 485.33

图5

纱线准静态试验仿真"

图6

弹道冲击实验仿真"

表2

试验结果与仿真结果对比"

层数 弹孔直径/mm 纱线断裂数/根
实验结果 仿真结果 实验结果 仿真结果
第1层 9 9.46 5 4
第2层 8 8.53 4 4
第3层 8 8.06 4 5
第4层 8.5 8.52 2 1
第5层 8.5 8.64 0 0

图7

靶板示意图"

表3

多层靶板参数及仿真结果"

靶板
编号
初速度/
(m·s-1)
末速度/
(m·s-1)
吸收能量/
J
比吸能/
(J·m2·g-1)
FP1 310 308.09 2.87 0.028 7
FP3 310 302.31 11.30 0.032 9
FP5 310 298.91 16.44 0.033 9

图8

侵彻过程中弹丸速度、加速度及多层织物内部能量变化"

图9

3种靶板的4个阶段侵彻状态"

图10

FP5、FP3动能和应变能峰值"

图11

侵彻过程中弹丸速度、加速度及铺层织物内能变化"

图12

靶板破坏状态云图"

[1] 翟文, 魏汝斌, 甄建军, 等. 高性能复合材料在人体防弹防刺技术领域的应用与展望[J]. 纺织导报, 2017(S1): 66-72.
ZHAI Wen, WEI Rubin, ZHEN Jianjun, et al. Application and prospect of high performance composite materials in the field of bullet-proof and stab-proof technology of human body[J]. China Textile Leader, 2017(S1): 66-72.
[2] 虢忠仁, 杜文泽, 王树伦, 等. 芳纶纤维抗弹复合材料研究进展[J]. 工程塑料应用, 2009, 37(1): 75-78.
GUO Zhongren, DU Wenze, WANG Shulun, et al. Research development in aramid antiballistic compo-site[J]. Engineering Plastics Application, 2009, 37(1): 75-78.
[3] TRAN P, NGO T, YANG E C, et al. Effects of architecture on ballistic resistance of textile fabrics: numerical study[J]. International Journal of Damage Mechanics, 2014, 23(3): 359-376.
doi: 10.1177/1056789513495246
[4] CAVALLARO P V. Effects of weave styles and crimp gradients in woven kevlar/epoxy composites[J]. Experimental Mechanics, 2016, 56(4): 617-635.
doi: 10.1007/s11340-015-0075-4
[5] ZHOU Y, CHEN X G. A numerical investigation into the influence of fabric construction on ballistic performance[J]. Composites Part B: Engineering, 2015, 76: 209-217.
doi: 10.1016/j.compositesb.2015.02.008
[6] PHAM Q H, HA-MINH C, CHU T L, et al. Numerical investigation of fibre failure mechanisms of one single Kevlar yarn under ballistic impact[J]. International Journal of Solids and Structures, 2022, 239: 111436.
[7] ZHOU Y, LI H, XIONG Z M, et al. The structural effects on the impact response of ultra-high-molecular-weight polyethylene plain weaves[J]. Textile Research Journal, 2021, 91(7/8): 911-924.
doi: 10.1177/0040517520966728
[8] ZHOU Y, YAO W T, ZHANG Z W, et al. Ballistic performance of the structure-modified plain weaves with the improved constraint on yarn mobility: experimental investigation[J]. Composite Structures, 2022, 280: 114913.
doi: 10.1016/j.compstruct.2021.114913
[9] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1/2): 161-173.
doi: 10.1016/S0263-8223(03)00029-1
[10] PARK J L, YOON B I, PAIK J G, et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid: Part I-effect of laminating sequence[J]. Textile Research Journal, 2012, 82(6): 527-541.
doi: 10.1177/0040517511420753
[11] TABIEI A, NILAKANTAN G. Ballistic impact of dry woven fabric composites: a review[J]. Applied Mechanics Reviews, 2008, 61: 010801.
doi: 10.1115/1.2821711
[12] NILAKANTAN G, GILLESPIE J W. Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects[J]. Composite Structures, 2012, 94(12): 3624-3634.
doi: 10.1016/j.compstruct.2012.05.030
[13] INGLE S, YERRAMALLI C S, GUHA A, et al. Effect of material properties on ballistic energy absorption of woven fabrics subjected to different levels of inter-yarn friction[J]. Composite Structures, 2021, 266: 113824.
doi: 10.1016/j.compstruct.2021.113824
[14] DUAN Y, KEEFE M, BOGETTI T A, et al. A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact[J]. International Journal of Impact Engineering, 2006, 32(8): 1299-1312.
doi: 10.1016/j.ijimpeng.2004.11.005
[15] GRUJICIC M, BELL W C, HE T, et al. Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric[J]. Journal of Materials Science, 2008, 43(18): 6301-6323.
doi: 10.1007/s10853-008-2893-6
[16] YANG Y F, LIU Y C, XUE S N, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles[J]. Composite Structures, 2021, 267: 113856.
doi: 10.1016/j.compstruct.2021.113856
[17] PALTA E, FANG H. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics[J]. Composite Structures, 2019, 207: 488-508.
doi: 10.1016/j.compstruct.2018.09.080
[18] MEYER C S, O'BRIEN D J, (GAMA) HAQUE B Z, et al. Mesoscale modeling of ballistic impact experiments on a single layer of plain weave compo-site[J]. Composites Part B: Engineering, 2022, 235: 109753.
doi: 10.1016/j.compositesb.2022.109753
[19] CHOCRON S, FIGUEROA E, KING N, et al. Modeling and validation of full fabric targets under ballistic impact[J]. Composites Science and Technology, 2010, 70(13): 2012-2022.
doi: 10.1016/j.compscitech.2010.07.025
[1] 谢宜轩, 钟林, 徐柠浩, 黄晓梅, 曹海建. 三维深角联芳纶织物/环氧树脂复合材料的弯曲性能[J]. 纺织学报, 2025, 46(11): 118-125.
[2] 杜雨杭, 侯东昱, 齐鹏飞. 基于摩擦纳米发电机原理的智能服装供能设计与优化[J]. 纺织学报, 2025, 46(11): 211-220.
[3] 陈馨蔚, 顾冰菲, 田佳莉, 周思凡, 刘瑜希, 刘金灵, 易洁伦, 孙玥. 基于参数化设计和数值模拟仿真技术的运动文胸版型优化[J]. 纺织学报, 2025, 46(04): 162-170.
[4] 马莹, 陈奡, 胡月鹏, 潘俊, 胡瀚杰, 禄盛. 芳纶平纹织物单纱抽拔力学性能分析[J]. 纺织学报, 2024, 45(03): 58-64.
[5] 陶静, 汪俊亮, 张洁. 数据驱动与有限元仿真融合的纱线断裂强力分析方法[J]. 纺织学报, 2024, 45(02): 238-245.
[6] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[7] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[8] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
[9] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[10] 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54.
[11] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[12] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[13] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[14] 周熠, 李杭, 严祥邦, 梁耀庭, 张中威. 层间间距对平纹双层结构靶体抗侵彻性能的影响[J]. 纺织学报, 2020, 41(11): 59-65.
[15] 李瑛慧 谢春萍 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!