纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 12-17.doi: 10.13475/j.fzxb.20180605906

• 纤维材料 • 上一篇    下一篇

聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能

莫达杰1, 李旭明1,2(), 许增慧3   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.绍兴文理学院 浙江省清洁染整技术重点实验室,浙江 绍兴 312000
    3.中国纺织科学研究院 江南分院, 浙江 绍兴 312071
  • 收稿日期:2018-06-20 修回日期:2019-01-28 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 李旭明
  • 作者简介:莫达杰(1996—),男。主要研究方向为生物质纤维。
  • 基金资助:
    浙江省科技厅计划项目(2017C31115)

Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO

MO Dajie1, LI Xuming1,2(), XU Zenghui3   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology, Shaoxing University, Shaoxing, Zhejiang 312000, China
    3. Jiangnan Branch, China Textile Academy, Shaoxing, Zhejiang 312071, China
  • Received:2018-06-20 Revised:2019-01-28 Online:2019-05-15 Published:2019-05-21
  • Contact: LI Xuming

摘要:

为制备具有阻燃性的生物可降解纤维,将聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)(PHBV)、聚乳酸(PLA)和聚磷酸铵(APP)通过熔融共混方式制备PHBV/PLA/APP复合材料并进行熔融纺丝,同时对其热学性能、热稳定性、拉伸性能和阻燃性能进行表征。结果表明:APP的引入对复合材料的冷结晶温度和熔融温度没有明显影响;随着APP质量分数的增加,复合材料的热稳定性和残炭率提高;随着牵伸倍数的增加,PHBV/PLA/APP复合纤维的断裂强度增大,且其断裂强度随APP的质量分数的增加呈先增加后减小趋势,当APP质量分数为5%时,断裂强度出现最大值;复合纤维的阻燃性能随APP质量分数的增加而提高,当APP质量分数达到10%时,阻燃效果最佳,其极限氧指数为32.3%,阻燃等级达到V-0级,且燃烧过程中无熔滴现象。

关键词: 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯), 聚乳酸, 聚磷酸铵, 熔融纺丝, 力学性能, 阻燃性能

Abstract:

In order to prepare the biodegradable fiber with flame retardant property, poly(3-hydroxybutyrate-co-3-hydroxyl valerate)(PHBV), poly(lactic acid)(PLA) and ammonium polyph osphate(APP) were melt blended, then PHBV/PLA/APP composite fiber was prepared by melt spinning. The thermal property, heat stability, tensile property and flame retardant properties of PHBV/PLA/APP composite fiber were tested. The results show that the addition of APP has no significant effect on the cool crystallization temperature and melting temperature of PHBV/PLA. With the increasing of APP mass fraction, thermal stability and carbon yield of PHBV/PLA composite are improved. With the increasing of draft ratio, the breaking strength of PHBV/PLA/APP composite fiber is enhanced. The breaking strength of PHBV/PLA/APP composite fiber is firstly increased then decreased with the addition of APP. When the APP mass fraction is 5%, the breaking strength reaches the peak value. Meanwhile, with the increasing of APP mass fraction, the flame retardant property of the composite fiber is improved. When the APP mass fraction is 10%, the flame retardant effect is optimum, the value of limit oxygen index is 32.3%, the flame retardant class is V-0, and no molten drop phenomenon occurs in burning process.

Key words: poly(3-hydroxybutyrate-co-3-hydroxyl valerate), polylactic acid, ammonium polyphosphate, melt spinning, mechanical property, flame retardant property

中图分类号: 

  • TS102.5

图1

PHBV/PLA/APP复合材料的DSC升温曲线"

图2

PHBV/PLA/APP复合材料的热稳定性曲线"

图3

不同APP质量分数的PHBV/PLA/APP复合材料断面形貌(×500)"

图4

牵伸倍数对PHBV/PLA/APP复合纤维断裂强度影响"

图5

APP质量分数对PHBV/PLA/APP复合纤维拉伸性能的影响"

表1

不同APP质量分数的HBV/PLA/APP复合材料的阻燃性能"

样品编号 LOI值/% UL94等级 有无熔滴
0# 23.6 V-2
1# 24.9 V-2
2# 28.5 V-1
3# 32.3 V-0
4# 32.7 V-0
[1] ZEMBOUAI Idris, KACI Mustapha, BEMHAMIDA Aida, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly-lactide blends: thermal stability, flammability and thermo-mechanical behavior[J]. J Polym Environ, 2014: 131-139.
[2] LI Longzhen, HUANG Wei, WANG Bingjie, et al. Properties and structure of polylactide/poly (3-hydroxy-butyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015,68:183-194.
[3] 朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016,37(2):21-27.
ZHU Feichao, HAN Jian, YU Bin, et al. Study on spinnability of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyl valerate) / poly (1actic acid) blends for melt-blown nonwovens[J]. Journal of Textile Research, 2016,37(2):21-27.
[4] JENNIFER G A, ESTEFANIA S S, JOSE M L, et al. Compatibilization of poly (3-hydroxybutyrate-co-3-hydroxy-valerate)-poly(lactic acid) blends with diisocyanates[J]. Journal of Applied Polymer Science, 2017(134):44806.
[5] 李旭明, 孙西超, 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017,38(4):12-16.
LI Xuming, SUN Xichao, SHI Lifen. Preparation and properties research of reinforcing and toughening PLA fiber[J]. Journal of Textile Research, 2017,38(4):12-16.
[6] LIU Q, WU C, ZHANG H, et al. Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit:morphology,structure,and property[J]. Journal of Applied Polymer Science, 2015,132(42):42689.
[7] MA P, SPOELSTRA A B, SCHMIT P, et al. Toughening of poly(1actic acid) by poly(β-phydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content[J]. European Polymer Journal, 2013,49(6):1523-1531.
doi: 10.1016/j.eurpolymj.2013.01.016
[8] WANG Yuying, SHIH Yengfong. Flame-retardant recycled bamboo chopstick fiber-reinforced poly(lactic acid) green composites via multifunctional additive system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016 (65):452-458.
[9] ZHU H, ZHU Q, LI J, et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide[J]. Polym Degrad Stab, 2011,96:183-189.
[10] MATK S, TOLDY A, KESZEI S, et al. Flame retardancy of biodegradable polymers and biocom-posites[J]. Polymer Degradation and Stability, 2005(88):138-145.
[11] HAPUARAEHEHI T D, PEIJS T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced compo-sites[J]. Composites Part A: Applied Science and Manufacturing 2010(41):954-963.
[12] SHUKOR F, HASSAN A, ISLAM M S, et al. Effect of ammonium polyphosphate on flame retardancy, thermalstability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites[J]. Material and Design 2014(54):425-429.
[13] VAHABI Henri, SHABANIAN Meisam, ARYANASAB Fezzeh, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta 2018(666):51-59.
[14] PRABHAKAR M N, REHMAN S A U, SONG J I, et al. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green Composites[J]. Carbohydrate Polymers 2017(168):201-211.
[15] REALINHO Vera, HAURIE Laia, FORMOSA Joan, et al. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinatein acrylonitrile-butadiene-styrene[J]. Polymer Degradation and Stability 2018(155):208-219.
[16] KHANAL Santosh, ZHANG Weipeng, AHMED Saad, et al. Effects of intumescent flame retardant system consisting of tris(2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites[J]. Composites Part A: Applied Science and Manufacturing 2018(112):444-451.
[17] JEENCHAM Rachasit, SUPPAKAM Nitinat, JARUKUMJORN Kasama. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisalfiber/polypropylene composites[J]. Composites Part B: Engineering 2014(56):249-253.
[18] YANG Xing, ZHANG Wei. Flame Retardancy of Wood-Polymeric Composites[M]. Amsterdam: Elsvier, 2019: 285-317.
[19] WANG Ming, WU Ying, LI Yidong, et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews 2017(57):557-593.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[7] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[8] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[9] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[10] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[11] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[12] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[13] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[14] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[15] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!