纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 85-93.doi: 10.13475/j.fzxb.20190804409

• 染整与化学品 • 上一篇    下一篇

硫酸钠在低带液轧-焙-蒸活性染料染色中的作用

吴伟1,2, 陈小文1,2, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3,4()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学化工与生物工程学院, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
    4.上海安诺其集团股份有限公司, 上海 201799
  • 收稿日期:2019-08-14 修回日期:2020-01-20 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 毛志平
  • 作者简介:吴伟(1991—),男,博士生。主要研究方向为计算化学方法在染整基础理论中的应用。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309700)

Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process

WU Wei1,2, CHEN Xiaowen1,2, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3,4()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    4. Shanghai ANOKY Group Co., Ltd., Shanghai 201799, China
  • Received:2019-08-14 Revised:2020-01-20 Online:2020-05-15 Published:2020-06-02
  • Contact: MAO Zhiping

摘要:

为探究加入硫酸钠后低带液轧-焙-蒸活性染料染色效果更好的原因,通过分子动力学模拟的方法,建立纤维表面染液层模型,研究在有无硫酸钠的条件下焙-蒸过程中体系水分蒸发、染料和离子分布情况,计算了数密度和径向分布函数。结果表明:硫酸钠在低带液轧-焙-蒸染色过程中存在保水作用,且在碱处理后,即纤维素糖环上的羟基变成氧负离子之后,保水作用更明显;硫酸钠的加入产生了纤维素氧负离子-钠离子-硫酸根离子-钠离子的稳定、定向排列的多电位层,能够有效锁住纤维表面的水分,为染料和纤维提供更好的反应环境,而且能够防止染料随着水分子在高温下发生解吸附、泳移以及水解反应。

关键词: 活性染料, 硫酸钠, 低带液, 分子动力学模拟, 保水作用

Abstract:

Aiming to explain the reasons that the dyeing performance became better after adding sodium sulfate in the low add-on pad-cure-steam reactive dyeing process, a model of dyeing solution layers on the surface of cellulose fibers were created. The water evaporation, dye and ion distribution in the systems during curing process with or without sodium sulfate were studied by means of molecular dynamics simulations. By calculating the number densities and radial distribution functions, the results show that sodium sulfate has a water retention effect in the process of low add-on pad-cure-steam reactive dyeing. After the alkali treatment, the hydroxyl groups on the cellulose sugar rings become oxygen negative ions, which make the effect of water retention becomes more obvious. The main reason for the water retention effect is that the addition of sodium sulfate produces stable and directional multi-potential layers: cellulose oxygen anion-sodium ion-sulfate ion-sodium ion. Such multi-potential layers can effectively lock moisture on the surface of the fiber, provide a better reaction environment for the dye and the fiber, and prevent desorption, migration and hydrolyzation of the dye with the water molecules at high temperature.

Key words: reactive dye, sodium sulfate, low add-on, molecular dynamics simulation, water retention

中图分类号: 

  • O647.9

图1

模拟体系设定示意图"

表1

模拟体系参数的设定"

体系
编号
纤维
模型
硫酸钠
质量浓度/
(g·L-1)
钠离子
个数
硫酸根
离子个数
水分子
个数
碱化
纤维素
糖环个数
纤维素 0 15 0 7 423
晶体 60 141 63 7 104
表面碱化 0 159 0 7 423 144
纤维素晶体 60 285 63 7 104 144

表2

有无硫酸钠情况下染色效果的对比"

体系 K/S平均值 色差 固色率平均值/%
无硫酸钠 5.362 2.555 5 74.55
有硫酸钠 8.045 1.216 9 86.45

图2

不同体系内(碱)纤维素晶体表面水分子个数随时间的变化"

图3

不同体系中(碱)纤维素表面水分子的数密度分布随时间的变化"

图4

不同体系中(碱)纤维素表面钠离子的数密度分布随时间的变化"

图5

碱纤维素表面硫酸根离子的数密度分布随时间的变化"

图6

体系Ⅳ中的多电位层示意图"

图7

不同体系中不同时间段内钠离子周围水分子的径向分布函数"

图8

不同时间段内硫酸根离子周围水分子的径向分布函数"

图9

不同体系中不同时间段内乙烯砜硫酸酯基团尾部的氧原子周围水分子的径向分布函数"

图10

不同体系中不同时间段内乙烯砜硫酸酯基团尾部的氧原子周围钠离子的径向分布函数"

图11

不同体系中不同时间段内乙烯砜硫酸酯基团尾部的氧原子周围钠离子的配位数"

[1] 张战旗, 齐元章, 王德振. 活性染料无盐染色加工技术研究与实践应用[J]. 纺织导报, 2018(12):59-61.
ZHANG Zhanqi, QI Yuanzhang, WANG Dezhen. Research and practice of salt-free dyeing processing technology with reactive dyes[J]. China Textile Leader, 2018(12):59-61.
[2] 孙铠, 蔡再生, 沈勇. 染整工艺原理: 第3分册[M]. 北京: 中国纺织出版社, 2010: 272-281.
SUN Kai, CAI Zaisheng, SHEN Yong. Principles of dyeing and finishing process: 3rd vol[M]. Beijing: China Textile & Apparel Press, 2010: 272-281.
[3] 舒大武, 房宽峻, 刘秀明, 等. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018,39(4):77-81.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Comparison on dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing[J]. Journal of Textile Research, 2018,39(4):77-81.
[4] 舒大武, 房宽峻, 刘秀明, 等. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018,39(2):106-111.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Influence of fabric heating rate on salt-free pad-steam dyeing of reactive dye[J]. Journal of Textile Research, 2018,39(2):106-111.
[5] 房宽峻, 刘曰兴, 舒大武, 等. 活性染料电中性无盐染色理论与应用[J]. 染整技术, 2017,39(12):50-54.
FANG Kuanjun, LIU Yuexing, SHU Dawu, et al. Theory and application of reactive dye neutral salt free dyeing[J]. Textile Dyeing and Finishing Journal, 2017,39(12):50-54.
[6] 冒晓东. 新型棉织物活性染料低给液染色研究[D]. 上海:东华大学, 2017: 18-43.
MAO Xiaodong. Research on a novel low add-on technology of dyeing cotton fabric with reactive dyestuff[D]. Shanghai: Donghua University, 2017: 18-43.
[7] THIAGO C F G, MUNIR S S. Cellulose-builder: a toolkit for building crystalline structures of cellulose[J]. Journal of Computational Chemistry, 2012,33(14):1338-1346.
doi: 10.1002/jcc.22959
[8] SPOEL D V D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005,26(16):1701-1718.
doi: 10.1002/jcc.20291 pmid: 16211538
[9] CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of The American Chemical Society, 1995,117(19):5179-5197.
doi: 10.1021/ja00124a002
[10] KIRSCHNER K N, YONGYE A B, TSCHAMPEL S M, et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates[J]. Journal of Computational Chemistry, 2008,29(4):622-655.
doi: 10.1002/jcc.20820 pmid: 17849372
[11] WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004,25(9):1157-1174.
doi: 10.1002/jcc.20035 pmid: 15116359
[12] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012,33(5):580-592.
doi: 10.1002/jcc.22885
[13] BAYLY C I, CIEPLAK P, CORNELL W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model[J]. The Journal of Physical Chemistry, 1993,97(40):10269-10280.
doi: 10.1021/j100142a004
[14] KASHEFOLGHETA S, VERDE A V. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions[J]. Physical Chemistry Chemical Physics, 2017,19(31):20593-20607.
doi: 10.1039/c7cp02557b pmid: 28731091
[15] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983,79(2):926-935.
[16] BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007,126(1):014101.
pmid: 17212484
[17] EVANS D J, HOLIAN B L. The nose-hoover thermo-stat[J]. The Journal of Chemical Physics, 1985,83(8):4069-4074.
[18] HOCKNEY R W, GOEL S P, EASTWOOD J W. Quiet high-resolution computer models of a plasma[J]. Journal of Computational Physics, 1974,14(2):148-158.
[19] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N·log (N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993,98(12):10089-10092.
[20] HESS B, BEKKER H, BERENDSEN H J, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997,18(12):1463-1472.
[21] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996,14(1):33-38.
pmid: 8744570
[1] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[2] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[3] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[4] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[5] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[6] 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99.
[7] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[8] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[9] 王阿明, 夏良君, 王运利. 活性红195在中性电解质溶液中的聚集行为[J]. 纺织学报, 2019, 40(04): 77-82.
[10] 舒大武 房宽峻 刘秀明 刘曰兴 蔡玉青 门雅静 李付杰. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(04): 77-81.
[11] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[12] 舒大武 房宽峻 刘秀明 李新禹 刘曰兴 张健飞 张鑫卿. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018, 39(02): 106-111.
[13] 俞俭 王业师 吕景春 周天池 魏取福. 低温等离子体处理木棉纤维的染色性能[J]. 纺织学报, 2017, 38(12): 88-94.
[14] 韩莹莹 孙丽静 钟毅 徐红 毛志平 . 活性染料Pickering乳液非均相浸渍染色[J]. 纺织学报, 2017, 38(11): 79-83.
[15] 李静 王晓 邵伟 崔永珠 魏春艳. 改性活性染料对涤纶织物的紫外光引发接枝染色[J]. 纺织学报, 2017, 38(11): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!