纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 89-94.doi: 10.13475/j.fzxb.20191204906

• 染整与化学品 • 上一篇    下一篇

苎麻纤维厌氧生物脱胶系统工艺性能研究

刘芳1, 马颜雪2,3, 陈小光1,4(), 刘书惠3, 张益榛1, 任志鹏1, 李康琪1, 童艺翾3, 任泺彤1, 李毓陵2,3   

  1. 1.东华大学 环境科学与工程学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.东华大学 纺织学院, 上海 201620
    4.东华大学 国家环境保护纺织工业污染防治工程技术中心, 上海 201620
  • 收稿日期:2019-12-23 修回日期:2020-06-15 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 陈小光
  • 作者简介:刘芳(1995—),女,硕士生。主要研究方向为纺织行业水污染控制技术。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232020G-01);上海市自然科学基金项目(17ZR1400300)

Study on process performance of ramie fiber anaerobic biological degumming system

LIU Fang1, MA Yanxue2,3, CHEN Xiaoguang1,4(), LIU Shuhui3, ZHANG Yizhen1, REN Zhipeng1, LI Kangqi1, TONG Yixuan3, REN Luotong1, LI Yuling2,3   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
    4. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2019-12-23 Revised:2020-06-15 Online:2020-11-15 Published:2020-11-26
  • Contact: CHEN Xiaoguang

摘要:

为解决苎麻纤维传统脱胶法效率低、费用高及二次污染等难题,以自主研发的高效苎麻纤维厌氧生物脱胶装置为载体,开发了一种高效苎麻纤维厌氧生物脱胶系统。基于苎麻原麻化学成分分析,开展了苎麻纤维厌氧生物脱胶工艺的启动特征、稳定运行特征和脱胶后苎麻纤维物理特征研究。结果表明:苎麻原麻中纤维素约占70%,胶质约占30%,脱胶过程中应重点去除半纤维素和木质素;该系统可在水力停留时间为72 h内实现快速启动,高效稳定运行时pH值为7.0左右,化学需氧量和氨氮质量浓度均处于低位;该系统在最佳浴比为1∶8时的苎麻物理特征最优,苎麻具有较好的外观形态和良好的力学性能,胶质残留最少。

关键词: 苎麻, 螺旋对称流厌氧反应器, 生物脱胶, 纤维素, 果胶

Abstract:

In order to solve the problems of low efficiency, high cost and secondary pollution in traditional degumming of ramie fiber, a high efficiency ramie fiber anaerobic degumming system was developed using a self-developed high efficiency ramie fiber anaerobic degumming device as the carrier. Based on chemical composition analysis of the raw ramie, the characteristics of the start-up and stable operation stages of ramie fiber anaerobic biological degumming process were studied, and the physical characteristics of the degummed ramie fiber were analyzed. It was found that cellulose and gelatine account for about 70% and 30% respectively in the raw ramie, and that the hemicellulose and lignin should be removed firstly in the degumming process. The system can start up rapidly within 72 hours of hydraulic retention time, and when it runs efficiently and stably, the pH is about 7.0, and chemical oxygen demand and ammonia nitrogen concentration are both at low levels. The ramie fiber has the best physical characteristics when the optimal water bath ratio is 1∶8, under which the ramie fiber has good appearance and mechanical properties, and the residue of gelatine is minimal.

Key words: ramie, spiral symmetry stream anaerobic bioreactor, biological degumming, cellulose, pectin

中图分类号: 

  • TS123.2

图1

苎麻纤维厌氧生物脱胶系统工艺流程 1—螺旋对称流厌氧反应器(SSSAB);2—自循环泵;3—苎麻;4—生物脱胶罐;5—外循环泵;6—进水泵;7—补液槽;Ⅰ—厌氧反应器子系统;Ⅱ—外循环子系统;Ⅲ—内循环子系统;Ⅳ液位平衡子系统。"

表1

苎麻脱胶后纤维外观形态评价评分细则"

指标 评价 评分标准
色泽 洁白有光泽 8~10
较黄略有光泽 5~7
黄褐色 0~4
柔软度 手感柔软顺滑 8~10
较柔软 5~7
手感较硬 0~4
夹生、硬块硬条 均匀无夹生、没有硬块硬条 8~10
较少夹生、硬块硬条较少 5~7
较多夹生、硬块硬条较多 0~4
碎麻 手感强力好,无碎麻 8~10
较少碎麻 5~7
手感强力低、较多碎麻 0~4
斑疵 纤维质量均匀、无斑疵 8~10
有褐色病斑、疵点 5~7
较多的褐色病斑、疵点 0~4

表2

苎麻原麻化学成分分析"

纤维素 半纤维素 果胶 水溶物 灰分 木质素 脂蜡质
70.03 13.16 4.72 4.68 3.94 2.37 1.10

图2

苎麻纤维脱胶系统启动运行过程中的pH值、COD和氨氮质量浓度变化曲线"

图3

苎麻纤维脱胶系统稳定运行过程中的pH值、COD和氨氮质量浓度变化曲线"

表3

不同浴比苎麻脱胶后纤维外观形态评定结果"

浴比 评分 总分
色泽 柔软度 夹生、硬块硬条 斑疵 碎麻
1∶13 6.73±0.22 5.63±0.59 5.13±0.57 7.40±0.27 6.80±0.37 31.69±2.02
1∶10 6.40±0.29 4.93±0.35 4.53±0.25 6.48±0.31 5.68±0.34 28.02±1.54
1∶8 7.73±0.22 6.25±0.24 4.90±0.34 6.90±0.50 5.80±0.36 31.58±1.66
1∶6 4.30±0.24 3.50±0.73 4.75±0.76 6.23±0.48 6.88±0.46 25.66±2.67

表4

不同浴比苎麻脱胶后纤维的物理力学性能"

浴比 线密度/
dtex
强度/
(cN·dtex-1)
质量
损失率/%
脱胶率/
%
1∶13 5.50 9.79 26.90 63.50
1∶10 6.00 7.18 25.30 62.36
1∶8 6.80 6.21 31.70 65.87
1∶6 7.60 5.87 29.88 60.39

图4

不同浴比苎麻脱胶后纤维红外光谱分析 注:1—原麻;2—浴比1∶6;3—浴比1∶10;4—浴比1∶13;5—浴比1∶8。"

[1] 杨琦, 段盛文, 彭源德. 苎麻微生物脱胶技术的研究进展[J]. 中国麻业科学, 2018,40(1):36-42.
YANG Qi, DUAN Shengwen, PENG Yuande. Research development on microbial degumming of ramie[J]. Plant Fibers and Products, 2018,40(1):36-42.
[2] LIU Lijun, CHEN Hequan, DAI Xiaobing, et al. Effect of planting density and fertilizer application on fiber yield of ramie(boehmeria nivea)[J]. Journal of Integrative Agriculture, 2012,11(7):1199-1206.
[3] 吕江南, 龙超海, 赵举, 等. 横向喂入式苎麻剥麻机的设计与试验[J]. 农业工程学报, 2013,29(16):16-21.
LÜ Jiangnan, LONG Chaohai, ZHAO Ju, et al. Design and experiment of transverse-feeding ramie decortica-tor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(16):16-21.
[4] 汪测生. 苎麻生物脱胶工艺技术的创新[J]. 四川纺织科技, 2001(1):4-6.
WANG Cesheng. Innovation in ramie bio-degumming technology[J]. Sichuan Textile Technology, 2001(1):4-6.
[5] 李强, 杨小明. 中国原始纺织技术起源新考[J]. 纺织科技进展, 2010(2):13-16.
LI Qiang, YANG Xiaoming. Study on primitive textile technologies in China[J]. Progress in Textile Science & Technology, 2010(2):13-16.
[6] LIU Guoliang, LI Zhengfan, DING Ruoyao, et al. The application of peroxide in the degumming process of ramie[J]. Advanced Materials Research, 2011, 307:1580-1584.
[7] BRUHLMANN Fredi, KIM Kwi Suk, ZIMMERMAN Wolfgang, et al. Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers[J]. Applied and Environmental Microbiology, 1994,60(6):2107-2112.
doi: 10.1128/AEM.60.6.2107-2112.1994 pmid: 16349296
[8] 陈景浩, 卢必涛, 王天佑, 等. 苎麻微生物脱胶菌株的最佳脱胶条件[J]. 纺织学报, 2014,35(12):91-95.
CHEN Jinghao, LU Bitao, WANG Tianyou, et al. Optimal degumming conditions of strains for microbial degumming of ramie[J]. Journal of Textile Research, 2014,35(12):91-95.
[9] 陈小光, 徐晓雪, 薛罡, 等. 一种螺旋对称流厌氧反应器: 201210054218.6[P]. 2012-07-18.
CHEN Xiaoguang, XU Xiaoxue, XUE Gang, et al. A spiral symmetry stream anaerobic bioreactor: 201210054218.6[P]. 2012-07-18.
[10] 陈小光, 刘芳, 李毓陵, 等. 一种高效苎麻生物脱胶反应系统: 201910079576.4[P]. 2019-04-02.
CHEN Xiaoguang, LIU Fang, LI Yuling, et al. A highly efficient biological degumming reaction system for ramie: 201910079576.4[P]. 2019-04-02.
[11] CHEN Xiaoguang, WANG Yu, WANG Zhiyao, et al. Efficient treatment of traditional Chinese pharmaceutical wastewater using a pilot-scale spiral symmetry stream anaerobic bioreactor compared with internal circulation reactor[J]. Chemosphere, 2019,228:437-443.
doi: 10.1016/j.chemosphere.2019.04.173 pmid: 31051345
[12] 刘书惠, 李毓陵, 崔运花, 等. 苎麻鲜麻沸水煮练处理对厌氧微生物脱胶的影响[J]. 中国麻业科学, 2020,42(1):31-37.
LIU Shuhui, LI Yuling, CUI Yunhua, et al. Anaerobic microbial degumming effect of boiling water on cooked fresh ramie[J]. Plant Fibers and Products, 2020,42(1):31-37.
[13] 李岗, 陈小光, 戴若彬. 螺旋对称流厌氧膜生物反应器的运行及优化[J]. 环境科学学报, 2017,37(6):2130-2136.
LI Gang, CHEN Xiaoguang, DAI Ruobing. Operation and optimization of spiral symmetry stream-anaerobic membrane bioreactor[J]. Acta Scientiae Circumstantiae, 2017,37(6):2130-2136.
[14] 冯湘沅, 刘正初, 段盛文, 等. 高效菌株CXJZU-120与T66的苎麻脱胶性能[J]. 纺织学报, 2011,32(12):76-80.
FENG Xiangyuan, LIU Zhengchu, DUAN Shengwen, et al. Degumming properties of high-efficiency strains CXJZU-120 and T66 for ramie[J]. Journal of Textile Research, 2011,32(12):76-80.
[15] 钟安华, 谭远友, 王成国, 等. 苎麻生长期对纤维结构及品质的影响[J]. 纺织学报, 2005,26(5):20-22,25.
ZHONG Anhua, TAN Yuanyou, WANG Chengguo, et al. Effect of ramie's growth period on its structure and character[J]. Journal of Textile Research, 2005,26(5):20-22,25.
[16] JIANG Wei, SONG Yan, LIU Shaoyang, et al. A green degumming process of ramie[J]. Industrial Crops and Products, 2018,120:131-134.
[17] YI Cui, JIA Manlan, LIU Liu, et al. Research on the character and degumming process of different parts of ramie fiber[J]. Textile Research Journal, 2018,88(17):2013-2023.
[18] MENG Chaoran, LI Zhaoling, WANG Chaoyun, et al. Sustained-release alkali source used in the oxidation degumming of ramie[J]. Textile Research Journal, 2017,87(10):1155-1164.
[19] 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019,40(4):72-76.
LI Mengzhen, ZHANG Bin, YU Chongwen. Softness treatment of ramie fibers by N-methyl-2-pyrrolidone[J]. Journal of Textile Research, 2019,40(4):72-76.
[1] 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[2] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[3] 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
[4] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[5] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[6] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[7] 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28.
[8] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[9] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[10] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[11] 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/ 苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57.
[12] 陈冬芝, 杨晓刚, 陈艳霞, 刘琳, 陈彬, 崔科丛, 张勇. 亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能 [J]. 纺织学报, 2020, 41(01): 88-95.
[13] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[14] 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
[15] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!