纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 198-205.doi: 10.13475/j.fzxb.20231004701

• 服装工程 • 上一篇    下一篇

织物-空气层-皮肤三维结构建模及其传热模拟

韩烨1, 田苗1,2,3(), 蒋青昀1, 苏云1,2, 李俊1,2   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2023-10-16 修回日期:2023-11-05 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 田苗(1989—),女,副教授,博士。主要研究方向为功能服装数值模拟及人体工效学。E-mail:tianmiao@dhu.edu.cn
  • 作者简介:韩烨(2000—),女,硕士生。主要研究方向为功能服装数值模拟。
  • 基金资助:
    中央高校基本科研业务费专项基金(2232023D-06/2232023G-08);上海市级大学生创新创业训练计划项目(S202110255124)

Three dimensional modeling and heat transfer simulation of fabric-air gap-skin system

HAN Ye1, TIAN Miao1,2,3(), JIANG Qingyun1, SU Yun1,2, LI Jun1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051,China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Key Laboratory of High Performance Fiters & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2023-10-16 Revised:2023-11-05 Published:2024-02-15 Online:2024-03-29

摘要:

热防护服装是消防员面对火灾环境的重要屏障,为分析织物组织对其热防护能力的影响,构建了消防服外层阻燃织物的三维几何模型,并考虑实际着装状态建立“织物-空气层-皮肤”流固耦合传热模型。根据实验结果验证模型,并选取外界环境、织物组织结构及纱线导热系数进行参数研究,对比织物表面温度分布及真皮层热流密度、温度变化曲线。结果表明,该模型能较好地拟合实验结果,随着热暴露峰值温度的上升及纱线宽度的增大,纱线表面温度、真皮层热流密度、真皮层温度均上升。纱线的导热系数对真皮层温度影响较小。纱线宽度对真皮层温度的影响与热环境相关。有必要针对热暴露环境设计织物结构,在保障热防护性能的同时减小热防护服装质量,降低消防员热应激。

关键词: 热传递, 数值模拟, 织物组织, 消防服, 低热辐射

Abstract:

Objective Excessive thermal protection of thermal protective clothing will lead to heat stress, which is detrimental to health and even poses safety risks to firefighters. Reducing the weight and increasing the permeability of firefighting clothing can reduce their heat stress. The purpose of this study was to investigate the effects of fabric panel structure on its thermal protective performance based on numerical simulation, so as to provide a theoretical basis for improving fabric structure design.

Method Both experimental and numerical methods were adopted in this study. The experiments were performed by SET (stored energy tester) with the fabrics used as the outer shell of firefighting clothing, which provided initial and boundary conditions for numerical models. The three dimensional geometric model was developed based on the real fabric structure. On this basis, a fluid-solid conjugated heat transfer model of fabric, air gap and skin was built considering the actual wearing state. The model was validated by the experiment results and a mesh independence test was performed. The validated model was used to carry out parameter studies taking into consideration of the ambient temperature, yarn count and thermal conductivity of yarn as parameters.

Results The simulation results were in correspondence with the testing results. The mesh independence test indicated that the computational results were insensitive to the mesh sizes used in this study. Throughout the entire heat exposure process, the temperature within the air gap beneath the clothing decreased rapidly. The presence of fabric and the air gap significantly contributed to the thermal protection of the skin. Under different ambient temperatures, the skin temperature remained consistent. As the heat exposure progressed, heat continually transferred to the dermis, leading to a continuous increase in dermal heat flux, which plateaued at around 45 s. With increasing peak heat exposure temperature, the surface temperature of the yarn, dermal heat flux, and dermal temperature all increased. Among all the parameters studied in this research, ambient temperature had the most substantial impact on the heat transfer process. At the microscale, yarn count had a minimal impact on skin temperature and heat flux, but this effect was temperature-dependent. Under low heat exposure conditions (758 K, 873 K), increasing yarn count resulted in reduced skin temperature and heat flux. However, as the peak heat exposure temperature rose to 988 K, increasing yarn count led to higher skin temperature and heat flux. An increase in yarn thermal conductivity had a minor effect on skin temperature and heat flux, with limited impact. Treating the yarn layer as a uniform medium resulted in lower yarn surface temperature and heat flux compared to the yarn structure model.

Conclusion To investigate the heat transfer process and thermal protective performance of the fabric used in firefighting clothing, both experiments and numerical simulation were performed in this study. The models were validated by the experimental results and a parameter study was conducted. The effects of ambient temperature, yarn count and yarn thermal conductivity on yarn surface temperature, dermal temperature and dermal heat flux were simulated. The findings of this study indicate that the presence of the fabric and air gap effectively reduces skin temperature. The yarn count in the fabric layer has a complex influence on the heat transfer within the fabric-air gap-skin' system, which varies with changes in ambient temperature. For a single-layer fabric system, the air gap beneath the clothing plays a more crucial role in thermal protection, thereby mitigating the relatively weaker impact caused by variations in the fabric's thermal conductivity. Therefore, the design of the fabric panel structure should take into consideration the heat exposure environment. This approach not only contributes to minimizing the weight of thermal protective clothing but also serves to mitigate the risk of heat stress on firefighters. It ultimately enhances the occupational safety of firefighters in high-temperature environments while ensuring the thermal protection performance of the clothing.

Key words: heat transfer, numerical simulation, fabric structure, firefighter's clothing, low-level radiation

中图分类号: 

  • X924.3

表1

平纹织物纱线结构参数"

编号 纱线宽度/
mm
纱线高度/
mm
织物厚度/
mm
纤维占
比/%
S1 0.65 0.1 0.2 45.86
S2 0.8 0.1 0.2 53.72
S3 均匀介质 - 0.2 100

图1

网格模型"

表2

织物-空气层-皮肤联合模型基本性能参数"

模型层 厚度/
mm
比热容cp/
(J·(kg·K)-1)
导热系数k/
(W·(m·K)-1)
密度ρ/
(kg·m-3)
阻燃纱线 0.1 1 570 多项式 605.5
衣下空气层 6.4 多项式 多项式 多项式
表皮层 0.08 3 590 0.24 1 200
真皮层 2 3 330 0.45 1 200
皮下组织 10 2 500 0.19 1 000

图2

网格独立性验证"

图3

真皮层温度随时间变化曲线"

图4

真皮层热流密度随时间变化曲线"

图5

不同热暴露峰值温度下热暴露60 s时模型S2计算域整体温度分布"

图6

不同热暴露峰值温度条件下织物温度"

图7

不同热暴露峰值温度条件下模型S1、S2、S3真皮层热流密度随时间变化曲线"

图8

不同热暴露峰值温度条件下模型S1、S2、S3真皮层温度随时间变化曲线"

表3

不同热暴露峰值温度条件下模型S1、S2真皮层最大温度及热流密度"

峰值温
度/K
最大温度/K 热流密度/(W·m-2)
S1 S2 S1 S2
758 320.65 320.49 2 787.22 2 761.87
873 325.91 325.84 3 762.32 3 758.06
988 331.59 331.72 4 818.11 4 858.12

表4

不同导热系数条件下真皮层最大温度及热流密度"

导热系数/(W·m-1·K-1) 温度/K 热流密度/(W·m-2)
0.1 325.59 3 713.19
0.3 325.77 3 744.77
0.5 325.81 3 752.01
[1] 李振营. 应急管理部举行习近平总书记向国家综合性消防救援队伍授旗致训词4周年专题新闻发布会[EB/OL]. 2022. https://www.mem.gov.cn/xw/xwfbh/2022n10y31rxwfbh/wzsl_4260/202210/t20221031_425195.shtml.
LI Zhenying. A special press conference held by the Ministry of Emergency Management for celebrating the fourth anniversary of CPC Secretary General XI Jinping making speech for awarding a flag to the National integrated Fire and Rescue Team[EB/OL]. 2022. https://www.mem.gov.cn/xw/xwfbh/2022n10y31rxwfbh/wzsl_4260/202210/t20221031_425195.shtml.
[2] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
ZHANG Wenhuan, LI Jun. Research progress of heat transfer mechanism in fire-fighting clothing system in low thermal radiation environment[J]. Journal of Textile Research, 2021, 42(10): 190-198.
[3] NUNNELEY S A. Heat stress in protective clothing: interactions among physical and physiological factors[J]. Scandinavian Journal of Work, Environment & Health, 1989, 15: 52-7.
[4] UDAYRAJ, TALUKDAR P, DAS A, et al. Effect of structural parameters on thermal protective performance and comfort characteristic of fabrics[J]. The Journal of The Textile Institute, 2017, 108(8): 1430-1441.
doi: 10.1080/00405000.2016.1255123
[5] PUSZKARZ A K, MACHNOWSKI W, BŁASIŃSKA A. Modeling of thermal performance of multilayer protective clothing exposed to radiant heat[J]. Heat and Mass Transfer, 2020, 56(6): 1767-75.
doi: 10.1007/s00231-020-02820-1
[6] PUSZKARZ A K, MACHNOWSKI W. Simulations of heat transfer through multilayer protective clothing exposed to flame[J]. Autex Research Journal, 2020, 22(3): 298-304.
doi: 10.2478/aut-2020-0041
[7] PUSZKARZ A K, KRUCIŃSKA I. Study of multilayer clothing thermal insulation using thermography and the finite volume method[J]. Fibres & Textiles in Eastern Europe, 2016, 6(120): 129-137.
[8] ZHENG Z, ZHAO X, WANG C, et al. Investigation of automated geometry modeling process of woven fabrics based on the yarn structures[J]. The Journal of the Textile Institute, 2015, 106(9): 925-933.
doi: 10.1080/00405000.2014.952966
[9] ZHENG Z, ZHANG N, ZHAO X. Simulation of heat transfer through woven fabrics based on the fabric geometry model[J]. Thermal Science, 2018, 22(6): 2815-2825.
doi: 10.2298/TSCI160507128Z
[10] 杨恩惠. 纬编针织物导热导湿的仿真研究[D]. 无锡: 江南大学, 2020:7-28.
YANG Enhui. Simulation study on heat and moisture transfer of weft knitted fabric[D]. Wuxi: Jiangnan University, 2020:7-28.
[11] ASAYESH A, TALAEI M, MAROUFI M. The effect of weave pattern on the thermal properties of woven fabrics[J]. International Journal of Clothing Science and Technology, 2018, 30(4): 525-35.
doi: 10.1108/IJCST-10-2017-0163
[12] GADEIKYTE ˙ A, BARAUSKAS R. Investigation of influence of forced ventilation through 3D textile on heat exchange properties of the textile layer[J]. Journal of Measurements in Engineering, 2020, 8(2): 72-8.
doi: 10.21595/jme
[13] 张洁. 基于ABAQUS的织物热传递性能分析[D]. 无锡: 江南大学, 2020:11-12.
ZHANG Jie. Analysis of fabric heat transfer performance based on ABAQUS[D]. Wuxi: Jiangnan University, 2020:11-12.
[14] UDAYRAJ T P, DAS A, ALAGIRUSAMY R. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016
[15] SONG G, CHITRPHIROMSRI P, DING D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):89-106.
pmid: 18394330
[1] 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213.
[2] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[3] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[4] 刘广菊, 苏云, 田苗, 李俊. 电加热鞋帮二维瞬态传热模型及其实验验证[J]. 纺织学报, 2023, 44(10): 127-133.
[5] 王旭, 闵尔君, 李少聪, 张文强, 彭旭光. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(08): 103-109.
[6] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[7] 吴珺秋, 李俊, 王敏. 相变冷却服热湿传递模型构建及其应用的研究进展[J]. 纺织学报, 2023, 44(08): 234-241.
[8] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[9] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[10] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[11] 文嘉琪, 李新荣, 李兴兴, 吴柳波. 面向服装面料自动缝合的缝纫工艺参数建模[J]. 纺织学报, 2023, 44(03): 158-167.
[12] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[13] 王诗潭, 江舒, 王云仪. 内穿服装对消防员热生理和心理反应的影响[J]. 纺织学报, 2023, 44(01): 164-170.
[14] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[15] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!