纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 198-205.doi: 10.13475/j.fzxb.20231004701
韩烨1, 田苗1,2,3(), 蒋青昀1, 苏云1,2, 李俊1,2
HAN Ye1, TIAN Miao1,2,3(), JIANG Qingyun1, SU Yun1,2, LI Jun1,2
摘要:
热防护服装是消防员面对火灾环境的重要屏障,为分析织物组织对其热防护能力的影响,构建了消防服外层阻燃织物的三维几何模型,并考虑实际着装状态建立“织物-空气层-皮肤”流固耦合传热模型。根据实验结果验证模型,并选取外界环境、织物组织结构及纱线导热系数进行参数研究,对比织物表面温度分布及真皮层热流密度、温度变化曲线。结果表明,该模型能较好地拟合实验结果,随着热暴露峰值温度的上升及纱线宽度的增大,纱线表面温度、真皮层热流密度、真皮层温度均上升。纱线的导热系数对真皮层温度影响较小。纱线宽度对真皮层温度的影响与热环境相关。有必要针对热暴露环境设计织物结构,在保障热防护性能的同时减小热防护服装质量,降低消防员热应激。
中图分类号:
[1] | 李振营. 应急管理部举行习近平总书记向国家综合性消防救援队伍授旗致训词4周年专题新闻发布会[EB/OL]. 2022. https://www.mem.gov.cn/xw/xwfbh/2022n10y31rxwfbh/wzsl_4260/202210/t20221031_425195.shtml. |
LI Zhenying. A special press conference held by the Ministry of Emergency Management for celebrating the fourth anniversary of CPC Secretary General XI Jinping making speech for awarding a flag to the National integrated Fire and Rescue Team[EB/OL]. 2022. https://www.mem.gov.cn/xw/xwfbh/2022n10y31rxwfbh/wzsl_4260/202210/t20221031_425195.shtml. | |
[2] | 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198. |
ZHANG Wenhuan, LI Jun. Research progress of heat transfer mechanism in fire-fighting clothing system in low thermal radiation environment[J]. Journal of Textile Research, 2021, 42(10): 190-198. | |
[3] | NUNNELEY S A. Heat stress in protective clothing: interactions among physical and physiological factors[J]. Scandinavian Journal of Work, Environment & Health, 1989, 15: 52-7. |
[4] |
UDAYRAJ, TALUKDAR P, DAS A, et al. Effect of structural parameters on thermal protective performance and comfort characteristic of fabrics[J]. The Journal of The Textile Institute, 2017, 108(8): 1430-1441.
doi: 10.1080/00405000.2016.1255123 |
[5] |
PUSZKARZ A K, MACHNOWSKI W, BŁASIŃSKA A. Modeling of thermal performance of multilayer protective clothing exposed to radiant heat[J]. Heat and Mass Transfer, 2020, 56(6): 1767-75.
doi: 10.1007/s00231-020-02820-1 |
[6] |
PUSZKARZ A K, MACHNOWSKI W. Simulations of heat transfer through multilayer protective clothing exposed to flame[J]. Autex Research Journal, 2020, 22(3): 298-304.
doi: 10.2478/aut-2020-0041 |
[7] | PUSZKARZ A K, KRUCIŃSKA I. Study of multilayer clothing thermal insulation using thermography and the finite volume method[J]. Fibres & Textiles in Eastern Europe, 2016, 6(120): 129-137. |
[8] |
ZHENG Z, ZHAO X, WANG C, et al. Investigation of automated geometry modeling process of woven fabrics based on the yarn structures[J]. The Journal of the Textile Institute, 2015, 106(9): 925-933.
doi: 10.1080/00405000.2014.952966 |
[9] |
ZHENG Z, ZHANG N, ZHAO X. Simulation of heat transfer through woven fabrics based on the fabric geometry model[J]. Thermal Science, 2018, 22(6): 2815-2825.
doi: 10.2298/TSCI160507128Z |
[10] | 杨恩惠. 纬编针织物导热导湿的仿真研究[D]. 无锡: 江南大学, 2020:7-28. |
YANG Enhui. Simulation study on heat and moisture transfer of weft knitted fabric[D]. Wuxi: Jiangnan University, 2020:7-28. | |
[11] |
ASAYESH A, TALAEI M, MAROUFI M. The effect of weave pattern on the thermal properties of woven fabrics[J]. International Journal of Clothing Science and Technology, 2018, 30(4): 525-35.
doi: 10.1108/IJCST-10-2017-0163 |
[12] |
GADEIKYTE ˙ A, BARAUSKAS R. Investigation of influence of forced ventilation through 3D textile on heat exchange properties of the textile layer[J]. Journal of Measurements in Engineering, 2020, 8(2): 72-8.
doi: 10.21595/jme |
[13] | 张洁. 基于ABAQUS的织物热传递性能分析[D]. 无锡: 江南大学, 2020:11-12. |
ZHANG Jie. Analysis of fabric heat transfer performance based on ABAQUS[D]. Wuxi: Jiangnan University, 2020:11-12. | |
[14] |
UDAYRAJ T P, DAS A, ALAGIRUSAMY R. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016 |
[15] |
SONG G, CHITRPHIROMSRI P, DING D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):89-106.
pmid: 18394330 |
[1] | 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213. |
[2] | 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60. |
[3] | 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82. |
[4] | 刘广菊, 苏云, 田苗, 李俊. 电加热鞋帮二维瞬态传热模型及其实验验证[J]. 纺织学报, 2023, 44(10): 127-133. |
[5] | 王旭, 闵尔君, 李少聪, 张文强, 彭旭光. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(08): 103-109. |
[6] | 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196. |
[7] | 吴珺秋, 李俊, 王敏. 相变冷却服热湿传递模型构建及其应用的研究进展[J]. 纺织学报, 2023, 44(08): 234-241. |
[8] | 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128. |
[9] | 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206. |
[10] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
[11] | 文嘉琪, 李新荣, 李兴兴, 吴柳波. 面向服装面料自动缝合的缝纫工艺参数建模[J]. 纺织学报, 2023, 44(03): 158-167. |
[12] | 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127. |
[13] | 王诗潭, 江舒, 王云仪. 内穿服装对消防员热生理和心理反应的影响[J]. 纺织学报, 2023, 44(01): 164-170. |
[14] | 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162. |
[15] | 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175. |
|