纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 106-113.doi: 10.13475/j.fzxb.20221201901

• 染整工程 • 上一篇    下一篇

聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能

李丽丽1, 袁亮2, 唐雨霞1, 杨文菊1, 王浩1()   

  1. 1.安徽农业大学 材料与化学学院, 安徽 合肥 230036
    2.马鞍山市纤维检验所, 安徽 马鞍山 243011
  • 收稿日期:2022-12-09 修回日期:2023-08-21 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 王浩
  • 作者简介:李丽丽(1997—),女,硕士生。主要研究方向为染整助剂制备及纤维材料改性。
  • 基金资助:
    科技部“科技助力经济”重点专项(国科发资〔2020〕151号);安徽省科技重大专项(202103a06020005)

Tea pigment dyeing of cotton fabric modified with polydopamine/chitosan and its antibacterial and anti-ultraviolet properties

LI Lili1, YUAN Liang2, TANG Yuxia1, YANG Wenju1, WANG Hao1()   

  1. 1. School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
    2. Ma'anshan Fiber Inspection Institute, Ma'anshan, Anhui 243011, China
  • Received:2022-12-09 Revised:2023-08-21 Published:2024-03-15 Online:2024-04-15
  • Contact: WANG Hao

摘要:

为提高棉织物的天然色素染色性和多功能性,利用CuSO4/H2O2氧化体系下多巴胺(DA)在织物表面快速聚合沉积后,采用壳聚糖(CS)整理制备聚多巴胺/壳聚糖(PDA/CS)改性棉织物,再用茶色素对其进行染色处理。探究了DA快速聚合沉积过程中各因素对改性棉织物染色性能的影响,得到较佳工艺条件:CuSO4浓度为3 mmol/L,DA质量浓度为2.0 mg/mL,H2O2浓度为13 mmol/L,沉积时间为2 h。在此条件下,PDA/CS改性棉织物染色后的K/S值达到6.21。研究结果表明:CuSO4/H2O2氧化体系下DA在棉织物表面形成PDA层,可与CS产生氢键作用在织物表面均匀成膜;茶色素染色PDA/CS改性棉织物的耐摩擦色牢度、耐皂洗色牢度(沾色)和耐人造光色牢度均达到4级及以上;PDA/CS改性织物染色后的UPF值为312,对金黄色葡萄球菌与大肠杆菌的抑菌率达到90%以上,具备抗菌和防紫外线的双重功效。

关键词: 棉织物, 聚多巴胺, 壳聚糖, 茶色素染色, 天然染料, 功能整理

Abstract:

Objective Plant dyes have attracted widespread attention in the textile industry due to their environmental and functional health benefits. To improve the dyeing durability and functionality of fabrics treated with plant dyes, chemical crosslinking agents or mordants are often used, which is harmful to the environment and human health. It is necessary to develop eco-friendly methods of plant dyes for fabric finishing, imparting fabrics good color fastness and multifunctionality.

Method Polydopamine/chitosan (PDA/CS) modified cotton fabrics were prepared by using chitosan (CS) finishing after rapid polymerization and deposition of dopamine (DA) on the fabric surface under CuSO4/H2O2 oxidation system, and then dyed with tea pigment. The structure and morphology of the fabrics before and after modification were characterized and analyzed through scanning electron microscope, Fourier transform infrared spetroscopy and X-ray photoelectron spectroscopy. The color fastness, antibacterial and UV resistance properties of different modified cotton fabrics dyed with tea pigment were compared and analyzed.

Results The effect of various factors on the dyeing performance of the modified cotton fabrics during the rapid polymerization and deposition of DA were investigated, and the better process conditions were obtained: CuSO4 concentration of 3 mmol/L, DA concentration of 2.0 mg/mL, H2O2 concentration of 13 mmol/L, and deposition time of 2 h. The K/S value of the PDA/CS modified cotton fabrics after dyeing reached 6.21. The fiber morphology and structure showed that the surface of PDA modified cotton fiber was obviously covered with a layer of PDA coating, which made CS uniformly film on the fabric surface, and the surface substance of PDA/CS modified cotton fabrics was further increased after dyeing with tea pigment. The chemical structure analysis showed that the intensity of the characteristic absorption peaks near 3 342 cm-1 of the PDA modified cotton fabrics increased significantly after CS treatment, indicating that hydrogen bonding between PDA molecules and CS molecules was generated on the surface of the cotton fabrics. The intensity of the absorption peaks of the modified fabrics after dyeing in the interval of 1 455 to 1 210 cm-1 were increased, indicating that the tea pigments were successfully adsorbed on the surface of the modified fabrics. Elemental composition analysis showed that compared with raw cotton, there was a new Nls absorption peak at 403.4 eV in the full spectrum of PDA modified cotton fabrics, and the N element content of PDA/CS modified cotton fabrics increased from 3.84% to 4.12%. The color fastness to soaps (discoloration) of PDA/CS modified cotton fabrics after dyeing was 3-4, and the color fastness to rubbing, soaps(staining) and artificial light reached 4 or above. The UPF value reached 312, and the transmittance of UVA and UVB bands were less than 1%. In addition, the inhibition rate of Staphylococcus aureus and Escherichia coli were 91% and 90%, respectively.

Conclusion Under the CuSO4/H2O2 oxidation system, DA rapidly polymerized to form PDA polymer. Cotton fabrics were composite modified by PDA and CS, and then dyed by the natural plant dye tea pigment without any chemical crosslinking agent or mordant. Modified fabrics after dyeing have good color fastness, as well as dual effects of antibacterial and anti-ultraviolet properties, which promoting the high-quality production of cotton textiles. It is expected to be developed as a short process technology for the integration of plant dye dyeing and finishing, providing a theoretical basis for the use of natural dyes in textile dyeing and finishing technology and the development of ecological textiles.

Key words: cotton fabric, polydopamine, chitosan, tea pigment dyeing, natural dye, functional finishing

中图分类号: 

  • TS195.6

图1

多巴胺自聚合机制"

图2

PDA/CS改性棉织物茶色素染色实验流程图"

表1

改性前后棉织物的染色效果对比"

织物名称 K/S
上染
率/%
L* a* b* c* h*
原棉织物 0.20 99.96 1.13 -1.17 1.63 314.10
CS改性染
色棉织物
2.52 16.6 65.41 9.65 19.19 21.48 63.30
PDA改性染
色棉织物
3.74 20.5 56.32 7.83 18.18 19.79 66.70
PDA/CS改性
染色棉织物
5.89 35.2 50.67 9.27 19.27 21.38 64.31

图3

DA聚合工艺参数对K/S值的影响"

图4

棉织物微观表面形态"

图5

改性前后棉织物的红外光谱图"

图6

改性前后棉织物的XPS全谱对比图"

表2

改性前后棉织物的表面元素组成"

样品 元素含量/%
C N O Cu
原棉织物 75.37 0.43 24.20 0
PDA改性棉织物 72.44 3.84 23.11 0.61
PDA/CS改性棉织物 73.91 4.12 21.50 0.47

表3

Colour fastness of dyed cotton fabrics before and after modification 级"

样品 耐摩擦色
牢度
耐皂洗色
牢度
耐人造
光色牢
湿 变色 沾色
原棉织物染色 2~3 2 2 3 2~3
PDA改性棉织物染色 4 3~4 3 3~4 3
CS改性棉织物染色 3 3 2~3 3 3
PDA/CS改性棉织物染色 4~5 5 3~4 4 4~5

表4

原棉织物与茶色素染色改性棉织物的防紫外线性能"

样品 透过率平均值/% UPF值
UVA UVB
原棉织物 13.46 10.26 10
PDA改性染色棉织物 0.70 0.40 249
CS改性染色棉织物 1.12 0.86 104
PDA/CS改性染色棉织物 0.50 0.20 312

图7

原棉与茶色素染色改性棉织物的抑菌带图片 1—原棉织物;2—PDA改性染色棉织物;3—CS改性染色棉织物; 4—PDA/CS改性染色棉织物。"

表5

原棉织物与茶色素染色改性棉织物的抑菌率"

样品 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌
原棉织物
PDA改性棉织物染色 43 39
CS改性棉织物染色 73 71
PDA/CS改性棉织物染色 91 90
[1] 宋慧君, 翟亚丽, 钞意元, 等. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(6):81-85.
SONG Huijun, ZHAI Yali, CHAO Yiyuan, et al. Dyeing of silk fabric with gardenia blue pigment[J]. Journal of Textile Research, 2020, 41 (6): 81-85.
[2] REN Y F, FU R R, FANG K J, et al. Dyeing cotton with tea extract based on in-situ polymerization: an innovative mechanism of coloring cellulose fibers by industrial crop pigments[J]. Industrial Crops and Products, 2019, 142:1-8.
[3] KAMBOJ A, JOSE S, SINGH A. Antimicrobial activity of natural dyes: a comprehensive review[J]. Journal of Natural Fibers, 2021, 31:5380-5394.
[4] FROESE, SCHMIDTKE A, SUKMANN K, et al. Application of natural dyes on diverse textile materials[J]. Journal for Light and Electronoptic, 2019, 181: 215-219.
[5] 王霖安. 天然染料的提取及其在棉针织物上的应用[D]. 杭州: 浙江理工大学, 2021:5-8.
WANG Lin'an. Extraction of natural dyes and its application in cotton knitted fabrics[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:5-8.
[6] 许云辉, 张永超, 李艳蓉, 等. 羧基壳聚糖酰胺接枝丝素材料的结构及性能[J]. 高分子材料科学与工程, 2018, 34(11):86-92.
XU Yunhui, ZHANG Yongchao, LI Yanrong, et al. Structure and properties of carboxy chitosan amide grafted silk fibroin[J]. Polymer Materials Science and Engineering, 2018, 34 (11):86-92.
[7] ARDEAN C, DAVIDESCU C M, NEME N S, et al. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization[J]. International Journal of Molecular Sciences, 2021, 22(14):7449.
doi: 10.3390/ijms22147449
[8] LI X Q, TANG R C. Crosslinked and dyed chitosan fiber presenting enhanced acid resistance and bioactivities[J]. Polymers, 2016, 8(4):119.
doi: 10.3390/polym8040119
[9] GONG X, WANG T, ZHANG Z, et al. A novel and non-toxic dopamine detection method based on self-polymerisation of dopamine[J]. Journal of Experimental Nanoscience, 2020, 15(1):233-241.
doi: 10.1080/17458080.2020.1757657
[10] WAITE J H, TANZER M L. Polyphenolie substance of mytilus edulis:novel adhesive containing L-dopa and hydroxyproline[J]. Science, 1981, 212(4498):1038-1040.
doi: 10.1126/science.212.4498.1038
[11] 任燕飞, 巩继贤, 张健飞, 等. 茶色素染液pH值对羊毛织物染色效果及抗菌性的影响[J]. 纺织学报, 2016, 37(11):86-91.
REN Yanfei, GONG Jixian, ZHANG Janfei, et al. Effect of pH value of tea pigment dyeing solution on dyeing effect and antibacterial property of wool fabric[J]. Journal of Textile Research, 2016, 37 (11): 86-91.
[12] ZHANG C, OU Y, LEI W X, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie, 2016, 55: 3054-3057.
[13] PHAM A N, WAITE T D. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions:mechanism and kinetics[J]. Journal of Inorganic Biochemistry, 2014, 137: 74-84.
doi: 10.1016/j.jinorgbio.2014.03.018
[14] 刘辉军, 吕进, 张维刚, 等. 茶叶中茶多酚含量的近红外光谱检测模型研究[J]. 红外技术, 2007, 29 (7):429-432.
LIU Huijun, LÜ Jin, ZHANG Weigang, et al. Study on the detection model of tea polyphenols in tea by near infrared spectroscopy[J]. Infrared Technology, 2007, 29(7):429-432.
[15] WANG J F, ZHANG R, JIANG J Z, et al. Flavan-3-ols in vitis seeds: their extraction and analysis by HPLC-ESI-MS/MS[J]. Food Research International, 2021. DOI:10.1016/j.foodres.2020.109911.
[1] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[2] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[3] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[4] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[5] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[6] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[7] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[8] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[9] 寿晨超, 娜仁高娃, 高素芸, 刘剑, 赵丰. 天然染料质谱数据库的建立与应用[J]. 纺织学报, 2023, 44(11): 120-131.
[10] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[11] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[12] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[13] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[14] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[15] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!