纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 11-20.doi: 10.13475/j.fzxb.20231005301

• 纤维材料 • 上一篇    下一篇

非对称结构纤维膜的制备及其热调控性能

田博阳1,2, 王向泽1,2, 杨湙雯1,2, 吴晶1,2()   

  1. 1.北京服装学院 北京市纺织纳米纤维工程技术研究中心, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
  • 收稿日期:2023-10-16 修回日期:2023-12-02 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 吴晶(1984—),女,副研究员,博士。主要研究方向为特殊浸润性功能化纳米纤维膜的开发及其应用。E-mail:a.wujing@163.com
  • 作者简介:田博阳(1998—),男,硕士生。主要研究方向为纳米纤维的开发与制备。
  • 基金资助:
    北京市教委一般项目(KM202310012001);北京服装学院高水平科研项目培育基金项目(PY23-011)

Preparation and thermal management properties of asymmetric structured fibrous membranes

TIAN Boyang1,2, WANG Xiangze1,2, YANG Yiwen1,2, WU Jing1,2()   

  1. 1. Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2023-10-16 Revised:2023-12-02 Published:2024-02-15 Online:2024-03-29

摘要:

为获得在寒冷环境下可通过零能耗的方式使人体保持合适体温的织物,将浸渍法和静电纺丝法相结合,以二维过渡金属碳氮化合物(MXene)、聚多巴胺(PDA)、聚氨基甲酸酯(PU)为原料,棉织物(Fc)为基底,制备了二维过渡金属碳氮化合物黏附聚多巴胺-棉织物(MXene/PDA-C)为亲水层,PU纤维膜为疏水层的非对称结构(PU/MXene/PDA-C)纤维膜复合材料。借助扫描电子显微镜、液态水分管理仪、接触角测试仪、傅里叶红外光谱仪等对所制备的PU/MXene/PDA-C进行表征测试。结果表明:当疏水层静电纺丝时间为15 min时,非对称结构纤维复合膜的单向液体运输能力最好,具有优异的水蒸气透过率,可将人体皮肤的汗液快速导出;此外,MXene赋予非对称结构纤维复合膜出色的光热转化性能,在模拟太阳光照射下,与普通棉织物相比,能够升温约30 ℃。

关键词: 静电纺丝, 纤维膜, 非对称结构, 热调控, 单向液体运输, 功能棉织物, 聚氨基甲酸酯

Abstract:

Objective Heating methods such as air conditioning are most popularly used for warmth keeping in cold environments, but such methods would raise temperature to the entire space, causing unnecessary energy waste and accelerating the greenhouse effect. Therefore, we hope to heat up a small space around the human body to make people feel comfortable in the cold space. In addition, when the two sides of the membrane show obvious differences in infiltration, that is when the membrane has an asymmetric structure, it can be unidirectional transport liquid, which helps to timely discharge the sweat generated when the human body is heated, and keep the human body dry and comfortable. With this purpose, in-situ polymerization and electrospinning methods were used to prepare PU/MXene-C fibrous membranes with asymmetric structure.

Method Using two dimensional transition metal nitrogen compounds (MXene), polydopamine (PDA) and polyurethane (PU) as raw materials, cotton fabric (Fc) as substrate, the PDA-adhesive MXene (MXene/PDA-C) as hydrophilic layer and PU fibrous membrane as hydrophobic layer were prepared by in-situ polymerization and electrospinning. The asymmetric structure of polyurethane/cotton fabric based polydopamine adhesion two-dimensional transition metal carbon nitrogen compound (PU/MXene/PDA-C) fiber film was obtained. The prepared PU/MXene/PDA-C was characterized by scanning electron microscopy, moisture management tester, contact angle tester and Fourier infrared spectrometer.

Results MXene was successfully adhered to cotton using PDA through in-situ polymerization, ultimately obtaining MXene/PDA-C. The content of Ti element on the surface of MXene/PDA-C was analyzed by EDS spectrum, which further proved the success of the preparation. After exploring the conditions of electrospinning PU fibers, PU fibrous membrane was electrospun on MXene/PDA-C with a mass fraction of 12.5% spinning solution, and the fiber diameter obtained by four different electrospinning nozzles was measured, and it was found that the diameter of the fiber increases with the increase of the inner diameter of the nozzles. After obtaining PU/MXene/PDA-C asymmetric structure fibrous membrane, the unidirectional liquid transport of PU/MXene/PDA-C was studied. Since the electrospinning time of the asymmetric structure fibrous membrane, and hence the thickness of the hydrophobic layer, would affect the unidirectional liquid transport of the fibrous membrane, the influence of different electrospinning time on the unidirectional liquid transport of PU/MXene/PDA-C was investigated. The strength of unidirectional liquid transport of PU/MXene/PDA-C was indicated by the size of hydrostatic pressure. The hydrostatic pressure of PU/MXene/PDA-C with electrospinning time of 5, 10 and 15 minutes was studied, and the optimal time of electrospinning was determined to be 15 min. With the optimal electrospinning time, the hydrostatic pressure of PU/MXene/PDA-C obtained with four different electrospinning nozzles was measured, and the nozzle type was determined to be 10G. The two conditions above were determined, and electrospinning was carried out with 10% and 12.5% PU electrospinning solution respectively. By comparing the difference of hydrostatic pressure, the optimum electrospinning solution was determined as 12.5% PU solution. PU/MXene/PDA-C obtained at electrospinning time of 15 min, nozzle type was 10G and 12.5% electrospinning solution mass fraction demonstrated excellent unidirectional liquid transport and water vapor transmission. Due to the addition of MXene with photothermal conversion ability to the asymmetric structure fibrous membrane, the temperature of it was about 30 ℃ higher than that of cotton fabric under the irradiation of simulated sunlight lamp, and the thermal images under the irradiation of infrared lamp also confirmed this result.

Conclusion In this research, the asymmetric structural fiber membrane with MXene/PDA-C as hydrophilic layer and PU as hydrophobic layer was prepared by the combination of in-situ polymerization and electrospinning methods. SEM and EDS characterization proved that MXene was successfully loaded on the surface of cotton fabric. The optimum conditions for preparing PU/MXene/PDA-C were obtained by hydrostatic test as electrospinning time 15 min, nozzle type is 10G and electrospinning solution mass fraction 12.5%. MMT test and water vapor transmittance test show that PU/MXene/PDA-C fibrous membrane has excellent unidirectional liquid transmittance. The outcome from this study would help expand the application of asymmetric structural membranes in personal moisture and heat management, leading broad development prospects in the field of smart wearable textiles.

Key words: electrospinning, fibrous membrane, asymmetric structure, thermal management, unidirectional liquid transport, functional cotton fabric, polyurethane

中图分类号: 

  • TB324

图1

非对称结构PU/MXene/PDA-C纤维复合膜制备流程"

图2

不同试样的实物图与SEM图"

图3

不同材料的EDS元素分析"

图4

不同质量分数、不同内径喷丝头下的PU纤维膜的SEM照片及对应水接触角"

图5

12.5%质量分数下不同内径喷丝头纤维直径分布"

图6

液体在PU/MXene/PDA-C两侧的运输行为"

图7

不同条件下的静水压测试"

图8

PU/MXene/PDA-C的MMT测试"

图9

不同温度条件下样品Fc、MXene/PDA-C和PU/MXene/PDA-C的水蒸气透过率"

图10

PU/MXene/PDA-C的集热性能"

[1] HARDY J D, DUBIOS E F. Regulation of heat loss from the human body[J]. Biological Science, 1937, 23(12): 624-631.
[2] NASTOS P T, MATZARAKIS A. Weather impacts on respiratory infections in Athens, Greece[J]. International Journal of Biometeorology, 2006, 50(6): 358-369.
pmid: 16596366
[3] ZHOU Zehang, SONG Quancheng, HUANG Bingxue, et al. Facile fabrication of densely packed Ti3C2MXene/nanocellulose composite films for enhancing electromagnetic interference shieldingand electro-/photothermal performance[J]. ACS Nano, 2021, 15(7): 12405-12417.
doi: 10.1021/acsnano.1c04526 pmid: 34251191
[4] FANG Yunsheng, ZHAO Xun, CHEN Guorui, et al. Smart polyethylene textiles for radiative and evaporative cooling[J]. Joule, 2021, 5(4): 752-754.
doi: 10.1016/j.joule.2021.03.019
[5] CAO Yunfeng, LIANG Shunlin, CHEN Xiaona, et al. Enhanced wintertime greenhouse effect reinforcing arctic amplification and initial sea-ice melting[J]. Scientific Report, 2017, 7: 8462.
[6] ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 33(6555): 692-696.
doi: 10.1126/science.33.853.692
[7] ZHANG Xiaohui, CHAO Xujiang, LOU Lun, et al. Personal thermal management by thermally conductive composites: a review[J]. Composites Communications, 2021. DOI:10.1016/j.coco.2020.100595.
[8] HU Run, LIU Yida, SHIN Sunmi, et al. Emerging materials and strategies for personal thermal manage-ment[J]. Advanced Energy Materials, 2020. DOI:10.1002/aenm.201903921.
[9] ZHU Liangliang, GAO Minmin, PEH C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons, 2018, 5(3): 323-343.
doi: 10.1039/C7MH01064H
[10] YOU J, HEO J H, KIM J, et al. Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity[J]. ACS Nano, 2013, 7(5): 4119-4128.
doi: 10.1021/nn400405t pmid: 23581994
[11] 徐云松, 姚忠平, 赵天琪, 等. MXene/枝状Co/聚偏氟乙烯复合光热膜制备及其界面蒸发性能[J]. 无机化学学报, 2022, 38, 2423-2432.
XU Yunsong, YAO Zhongping, ZHOA Tianqi, et al. Preparation of MXene/dendritic Co/polyvinylidene fluoride composite photothermal film and its interfacial evaporation performance[J]. Journal of Inorganic Chemistry, 2022, 38, 2323-2432.
[12] YANG Haocheng, XIE Yunsong, HOU Jingwei, et al. Janus membranes: creating asymmetry for energy efficiency[J]. Advanced Materials, 2018. DOI:10.1002/adma.201801495.
[13] ZHU Ruofei, LIU Mingming, HOU Yuanyuan, et al. Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125.
[14] WANG Xianfeng, HUANG Zhan, MIAO Dongyang, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070.
doi: 10.1021/acsnano.8b08242 pmid: 30561986
[15] YANG Tiantian, WANG Shi, YANG Haoru, et al. Temperature-triggered dynamic janus fabrics for smart directional water transport[J]. Advanced Functional Materials, 2023. DOI:10.1002/adfm.202214183.
[16] ZHAO Meng, LIU Yucheng, ZHANG Jiuxuan, et al. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration[J]. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121418.
[17] 刘兆麟. 静电纺串珠纤维形貌结构及载药性能的研究进展[J]. 材料导报, 2017, 31: 21-25.
LIU Zhaolin. Research progress on morphology, structure and drug loading properties of electrospinning beaded fibers[J]. Materials Review, 2017, 31: 21-25.
[1] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[2] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[3] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[4] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[5] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[6] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[7] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[8] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[9] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[10] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[11] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[12] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[13] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[14] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[15] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!