纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 244-250.doi: 10.13475/j.fzxb.20231103002

• 综合述评 • 上一篇    下一篇

棉纤维产地溯源技术及研究进展

王波(), 蒋志青, 鲍军方, 刘津玮   

  1. 青岛市纤维纺织品检验研究院, 山东 青岛 266100
  • 收稿日期:2023-11-14 修回日期:2024-07-25 出版日期:2024-11-15 发布日期:2024-12-30
  • 作者简介:王波(1979—),男,高级工程师。主要研究方向为棉纤维质量检测与评价。E-mail:18661812399@163.com

Research progress in geographic origin traceability technology for cotton fibers

WANG Bo(), JIANG Zhiqing, BAO Junfang, LIU Jinwei   

  1. Qingdao Fiber Textile Inspection Institute, Qingdao, Shandong 266100, China
  • Received:2023-11-14 Revised:2024-07-25 Published:2024-11-15 Online:2024-12-30

摘要:

为更好解决现阶段棉花市场以次充好、产地混淆的问题,保障国棉收储的公平公正,对棉纤维产地溯源技术展开系统性梳理和总结。介绍了近年来棉纤维产地溯源技术的研究进展,重点阐述了国内外近红外光谱技术、DNA分子标记技术和稳定同位素技术测试的原理和研究现状,分析了各技术在应用于产地溯源方面的优势及存在的问题。最后指出:通过提高数学模型构建水平,可利用近红外光谱技术实现棉样产地的规模检测;棉纤维DNA分子提纯技术和提纯效率仍存在难点;除C、H、O、N外,考虑更多的稳定同位素是未来稳定同位素技术攻克棉纤维产地溯源的研究重点;利用现有技术,辅以元素分析、色谱分析等,发展融合溯源技术,在快速实现棉纤维产地溯源领域具有广阔的发展前景。

关键词: 棉纤维, 产地溯源, 近红外光谱技术, DNA分子标记技术, 稳定同位素技术

Abstract:

Significance The quality of cotton fibers is closely related to the quality of downstream textiles. At present, Problems exist in the cotton market such as shoddy goods and confusion of production areas, which infringe on the legitimate rights and interests of consumers and undermine the fairness and justice of national cotton storage. Therefore, research on the geographic origin traceability of cotton fibers is an important issue. The conventional methods for identifying the geographic origin of cotton fibers are based on manual experience identification and by reviewing cotton import documents. The manual experience appraisal method is easily influenced by human subjective consciousness and cannot fully and accurately distinguish the geographic origin and quality of cotton fibers, and cotton import documents are easy to forge. Therefore, it is necessary to develop a scientific and accurate method for tracing the geographic origin of cotton fibers, which will not rely on product packaging and product documents but rather on testing the cotton fibers, in order to quickly determine the geographic origin of cotton fibers, standardize the order of cotton trading markets, and ensure the quality of downstream textiles.

Progress In recent years, some emerging technologies have developed in the field of biological origin traceability, such as near infrared spectroscopy, DNA molecular markers technology, and stable isotope technology. The determination of the origin and traceability of cotton fibers using near-infrared spectroscopy technology is based on the slight differences in the absorption intensity of hydrogen containing chemical functional groups of cotton fibers from different origins in the near-infrared region, which can be combined with other analysis methods to detect and trace cotton fibers from unknown origins. The DNA molecular marker technology is adopted to identify the origin of cotton fibers by analyzing genetic markers between individual cotton fibers to determine biological differences. DNA molecular markers of cotton fibers are detected using DNA detection techniques such as polymerase chain reaction to obtain their DNA fingerprints, thereby achieving variety identification and origin traceability. Cotton usually grows in fixed areas, and the isotope "fingerprints" of cotton fibers in the same area are extremely similar, which can fully reflect the growth environment of cotton and its interaction with environmental changes. Therefore, the source of cotton fibers can be distinguished by common stable isotope ratios. These technologies have been preliminarily studied in the field of cotton fiber origin traceability, and have more advantages than other traditional identification methods.

Conclusion and Prospect The near infrared spectroscopy technology can utilize appropriate mathematical models for large-scale detection of cotton samples, but further exploration is needed in terms of modeling accuracy and automation. In the future, computer simulation technology can be combined to achieve real-time monitoring of cotton quality and production areas. The DNA molecular marker technology can directly detect differences on molecular chains of cotton fibers, without being limited by cotton fiber maturity, growth environment, and gene expression, and has extremely high accuracy. However, it is difficult to extract complete DNA molecular chains from mature cotton fibers, and no complete gene database can be provided yet. In the future, it is necessary to improve cotton fiber DNA purification technology and improve purification efficiency. The detection results of stable isotope technology are not affected by human and environmental factors, but many factors that affect the abundance of various isotopes in cotton fibers exist, such as latitude and longitude, climate, and human intervention. In future research, more factors that affect cotton growth should be considered, and research on other stable isotopes should be added, not limited to elements C, H, O, and N. Next, based on existing detection methods, multiple technology fusion traceability methods can be developed to overcome the drawbacks of a single technology, achieving complementary advantages, and increasing the applicability of detection. By collecting a large number of samples and expanding the sample range, the cotton fiber origin database will be enriched, and the efficiency and accuracy of cotton fiber origin traceability will be improved.

Key words: cotton fiber, geographic origin, near infrared spectroscopy, DNA molecular marker, stable isotope analysis

中图分类号: 

  • TS111.9
[1] 刘涵. 中国棉花进口格局与展望[J]. 农业展望, 2011, 7(4): 5-9.
LIU Han. The import pattern and prospects of cotton in China[J]. Outlook on Agriculture, 2011, 7(4): 5-9.
[2] 刘佳. 2022年中国棉花市场分析[N]. 粮油市场报, 2023-02-14( 4).
LIU Jia. Analysis of China's cotton market in 2022[N]. Grain News, 2023-02-14( 4).
[3] 田新权, 付小琼, 时萌, 等. 棉纤维DNA的提取及其在品种溯源中的尝试[J]. 棉花学报, 2019, 31(2): 156-162.
doi: 10.11963/1002-7807.txqml.20190322
TIAN Xinquan, FU Xiaoqiong, SHI Meng, et al. Extraction of cotton fiber DNA and its application in traceability[J]. Cotton Science, 2019, 31(2): 156-162.
[4] 孙武勇, 何艳丽, 魏东伟, 等. 近红外光谱技术在棉纤维品质检测和产地溯源中的研究进展[J]. 中国农学通报, 2017, 33(9): 146-149.
doi: 10.11924/j.issn.1000-6850.casb16050135
SUN Wuyong, HE Yanli, WEI Dongwei, et al. Near infrared spectroscopy in quality inspection and origin tracing of cotton fibers[J]. Chinese Agricultural Science Bulletin, 2017, 33(9): 146-149.
doi: 10.11924/j.issn.1000-6850.casb16050135
[5] 刘文艳, 闫忠心, 郝力壮, 等. 光谱技术在食品产地溯源中的应用研究进展[J]. 食品工业科技, 2023, 44(21): 421-430.
LIU Wenyan, YAN Zhongxin, HAO Lizhuang, et al. Research progress in the application of spectroscopic technology in the traceability of food origin[J]. Science and Technology of Food Industry, 2023, 44(21): 421-430.
[6] 王瑞, 司银松, 芦浩浩, 等. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
doi: 10.13475/j.fzxb.20210800106
WANG Rui, SI Yinsong, LU Haohao, et al. Rapid quantitative detection of silk grafting ratio based on near infrared spectroscopy[J]. Journal of Textile Research, 2022, 43(11): 29-34.
doi: 10.13475/j.fzxb.20210800106
[7] 张鹏, 李江阔, 陈绍慧, 等. 近红外光谱用于鉴别苹果产地的研究[J]. 食品科技, 2014, 39(11): 305-309.
ZHANG Peng, LI Jiangkuo, CHEN Shaohui, et al. Discrimination method of different origin apples based on near infrared spectroscopy[J]. Food Science and Technology, 2014, 39(11): 305-309.
[8] BONIFAZI G, GASBARRONE R, PALMIERI R, et al. End-of-life textile recognition in a circular economy perspective: a methodological approach based on near infrared spectroscopy[J]. Sustainability, 2022, 14(16):10249-10263.
[9] SONG L, CHEN E, ZHENG T, et al. Blended fabric with integrated neural network based on attention mechanism qualitative identification method of near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022. DOI: 10.1016/j.saa.2022.121214.
[10] 陈冬英, 张昊, 张子龙, 等. 基于改进1D-VD-CNN与近红外光谱数据的金银花产地溯源研究[J]. 光谱学与光谱分析, 2023, 43(5): 1471-1477.
CHEN Dongying, ZHANG Hao, ZHANG Zilong, et al. Research on the origin traceability of honeysuckle based on improved 1D-VD-CNN and near-infrared spectral data[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1471-1477.
[11] 孙晓荣, 胡毅然, 刘翠玲, 等. 基于近红外光谱技术的茶叶新旧鉴别及产地溯源研究[J]. 食品安全质量检测学报, 2023, 14(5): 53-59.
SUN Xiaorong, HU Yiyan, LIU Cuiling, et al. Identification of new and old tea and origin traceability based on near infrared spectroscopy[J]. Journal of Food Safety and Quality, 2023, 14(5): 53-59.
[12] COSTA L R, RAMALHO F M G, HEIN P R G. Evaluating biofibers' properties and products by NIR spectroscopy[J]. Advances in Bio-Based Fiber, UK: 2022. DOI: 10.1016/B978-0-12-824543-9.00023-2.
[13] YAGI C, YOSHIMURA N, TAKAYANAGI M, et al. Discrimination of traditional plant fibers used in Japanese cultural artifacts by infrared spectroscopy[J]. Vibrational Spectroscopy, 2022. DOI: 10.1016/j.vibspec.2022.103466.
[14] RASHED H S, PARROTT A J, NORDON A, et al. Pocket-size near-IR spectrometers for rapid examination of contaminated textile fibres at the crime-scene[J]. Vibrational Spectroscopy, 2022. DOI: 10.1016/j.vibspec.2022.103464.
[15] RASHED H S, MISHRA P, NORDON A, et al. A comparative investigation of two handheld near-IR spectrometers for direct forensic examination of fibres in-situ[J]. Vibrational Spectroscopy, 2021. DOI: 10.1016/j.vibspec.2020.103205.
[16] FORTIER C, RODGERS J. Preliminary examinations for the identification of U.S. domestic and international cotton fibers by near-infrared spectroscopy[J]. Fibers, 2014, 2(4): 264-274.
[17] AL KTASH M, HAULER O, OSTERTAG E, et al. Ultraviolet-visible/near infrared spectroscopy and hyperspectral imaging to study the different types of raw cotton[J]. Journal of Spectral Imaging, 2020. DOI: 10.1255/jsi.2020.a18.
[18] 王静, 刘超子, 王铭, 等. 同位素质谱及近红外光谱技术在棉花产地溯源中应用进展[J]. 中国棉花, 2023(12):42-46.
doi: 10.11963/cc20230077
WANG Jing, LIU Chaozi, WANG Ming, et al. Progress in the application of isotope mass spectrometry and near infrared spectroscopy for origin traceability of cotton[J]. China Cotton, 2023(12): 42-46.
doi: 10.11963/cc20230077
[19] LIU Y, TODD CAMPBELL B, DELHOM C, et al. Variation and relationship of quality and near infrared spectral characteristics of cotton fibers collected from multi-location field performance trials[J]. Textile Research Journal, 2015, 85(14): 1474-1485.
[20] SAITO K, YAMAGATA T, KANNO M, et al. Discrimination of cellulose fabrics using infrared spectroscopy and newly developed discriminant analy-sis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021. DOI: 10.1016/j.saa.2021.119772.
[21] 康帅, 任晓镤, 彭增起. 羊肉的产地溯源和鉴别技术研究进展[J]. 肉类研究, 2023, 37(4): 48-53.
KANG Shuai, REN Xiaopu, PENG Zengqi. Progress in techniques for mutton traceability and authenti-cation[J]. Meat Research, 2023, 37(4): 48-53.
[22] 颜静, 熊亚波, 刘继, 等. 基于农产品无损检测的产地溯源技术的研究进展[J]. 食品工业科技, 2014, 35(11): 396-400.
YAN Jing, XIONG Yabo, LIU Ji, et al. The review of agricultural products traceability of origin based on non-destructive testing technology[J]. Science and Technology of Food Industry, 2014, 35(11): 396-400.
[23] 黄映萍. DNA分子标记研究进展[J]. 中山大学研究生学刊(自然科学、医学版), 2010, 31(2): 27-36.
HUANG Yingping. Research progress in DNA molecular markers[J]. Journal of the Graduates Sun YAT-SEN University (Natural Sciences.Medicine), 2010, 31(2): 27-36.
[24] XIONG Y, LEI X, BAI S, et al. Genomic survey sequencing, development and characterization of single-and multi-locus genomic SSR markers of Elymus sibiricus L[J]. BMC Plant Biology, 2021. DOI: 10.1186/s12870-020-02770-0.
[25] DAS J, RAGHAVENDRA K, SANTOSH H, et al. Cotton DNA traceability technologies[J]. ICAC Rec, 2017, 35(3): 5-15.
[26] 孔杰. 海岛棉遗传多样性及对纤维性状的关联分析与转录组学分析[D]. 北京: 中国农业大学, 2018:25-32.
KONG Jie. Genetic diversity, genome-wide association study and transcriptome analysis on fiber traits of sea island cotton[D]. Beijing: China Agricultural University, 2018:25-32.
[27] 韩丽华. 稳定同位素技术在桑蚕丝织溯源中的应用研究初探[D]. 浙江: 浙江理工大学, 2018:4-5.
HAN Lihua. Pilot study on stable isotope to trace the origin of silk fabrics[D]. Zhejiang: Zhejiang Sci-Tech University, 2018:4-5.
[28] FU H, WEI L, CHEN H, et al. Combining stable C, N, O, H, Sr isotope and multi-element with chemometrics for identifying the geographical origins and farming patterns of Huangjing herb[J]. Journal of Food Composition and Analysis, 2021. DOI: 10.1016/j.jfca.2021.103972.
[29] HAO S, FADONG L I. Water sources for typical desert vegetation in the Ebinur Lake basin[J]. Journal of Geographical Sciences, 2022, 32(6): 1103-1118.
doi: 10.1007/s11442-022-1987-4
[30] HAI C, CHEN H, SUO Y, et al. Geographical origin and species identification of Lilii Bulbus using C/N/H/O stable isotopes and multi-elemental combined chemometrics[J]. Journal of Food Composition and Analysis, 2023. DOI: 10.1016/j.jfca.2022.105062.
[31] 彭凯秀, 刘欢, 刘鸽, 等. 稳定同位素技术在动植物源食品溯源中的应用研究[J]. 食品工业科技, 2021, 42(8): 338-345.
PENG Kaixiu, LIU Huan, LIU Ge, et al. Application and research progress of stable isotop etechnology in animal and plant food traceability[J]. Science and Technology of Food Industry, 2021, 42(8): 338-345.
[32] LI A, ZHAO J, XI J, et al. Geographical authentication of peach in China based on stable isotope combined with multielement analysis of peach juice[J]. Food Control, 2021. DOI: 10.1016/j.foodcont.2021.108126.
[33] CAMIN F, LARCHER R, NICOLINI G, et al. Isotopic and elemental data for tracing the origin of European olive oils[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 570-577.
doi: 10.1021/jf902814s pmid: 20000737
[34] WADOOD S A, GUO B, LIU H, et al. Study on the variation of stable isotopic fingerprints of wheat kernel along with milling processing[J]. Food Control, 2018. DOI: 10.1016/j.foodcont.2018.03.045.
[35] MEIER-AUGENSTEIN W, KEMP H, SCHENK E, et al. Discrimination of unprocessed cotton on the basis of geographic origin using multi-element stable isotope signatures[J]. Rapid communications in mass spectrometry: RCM, 2014. DOI: 10.1002/rcm.6811.
[36] TOHI M. Exploration of the techniques and applications of δ2H, δ18O and δ13C stable isotope analysis for the authentication of raw cotton[D]. Otago: University of Otago, 2020:1-37.
[37] Cotton USATM与Oritain建立新的合作伙伴关系,追溯棉花原产地[J]. 纺织导报, 2019(12): 8.
Cotton USATM and Oritain establish a new partnership to trace the origin of cotton[J]. China Textile Leader, 2019(12): 8.
[38] 赵丰, 路婧中, 彭志勤, 等. 一种以稳定同位素技术为基础对棉纤维产地溯源的方法: 201710660283.6[P]. 2017-12-01.
ZHAO Feng, LU Jingzong, PENG Zhiqin, et al. A method for tracing the origin of cotton fiber based on stable isotope technology: 201710660283.6[P]. 2017-12-01.
[1] 朱蕾, 李勇, 陈晓川, 汪军. 基于分形与三维编织理论的棉纤维集合体梳理过程有限元建模与仿真[J]. 纺织学报, 2024, 45(11): 65-72.
[2] 马承诺, 姜开翔, 陈春晖, 刘园玲, 张有强. 新疆单根长绒棉纤维力学特性及断裂形态分析[J]. 纺织学报, 2024, 45(02): 36-44.
[3] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[4] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[5] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[6] 裴刘军, 施文华, 张红娟, 刘今强, 王际平. 非水介质活性染料染色关键技术体系及其产业化研究进展[J]. 纺织学报, 2022, 43(01): 122-130.
[7] 谢婉婷, 刘其海, 贾振宇, 朱小花, 王荣辉. 超吸水改性棉纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 48-54.
[8] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[9] 张梦阳, 陈晓川, 汪军, 李勇. 基于ANSYS CFX的棉纤维马克隆值的建模与仿真[J]. 纺织学报, 2020, 41(07): 29-34.
[10] 邵金鑫, 张宝昌, 曹继鹏. 基于图像处理与深度学习方法的棉纤维梳理过程纤维检测识别技术[J]. 纺织学报, 2020, 41(07): 40-46.
[11] 张戈, 周建, 王蕾, 潘如如, 高卫东. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(04): 72-77.
[12] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[13] 陶金 张德锁 林红 陈宇岳. 介孔氧化硅/棉复合纤维对染料的吸附性能[J]. 纺织学报, 2018, 39(10): 93-98.
[14] 陈丽丽 楼利琴 傅雅琴. 木棉纤维/棉混纺织物结构参数对其保暖透气性影响[J]. 纺织学报, 2018, 39(06): 47-51.
[15] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!