纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 199-205.doi: 10.13475/j.fzxb.20230902301

• 机械与设备 • 上一篇    下一篇

纤维在转杯纺纺纱器中的运动和形态变化分析

龚新霞, 邵秋, 杨瑞华()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-09-11 修回日期:2024-01-07 出版日期:2024-12-15 发布日期:2024-12-31
  • 通讯作者: 杨瑞华(1981—),女,教授,博士。主要研究方向为智能自动化纺纱技术和成纱理论。E-mail:yangrh@jiangnan.edu.cn
  • 作者简介:龚新霞(1999—),女,硕士生。主要研究方向为新型纺纱方法。
  • 基金资助:
    国家自然科学基金面上项目(52273034)

A study on movement and deformation of fibers in rotor spinning devices

GONG Xinxia, SHAO Qiu, YANG Ruihua()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-09-11 Revised:2024-01-07 Published:2024-12-15 Online:2024-12-31

摘要:

为研究转杯纺关键部件(输纤通道、转杯)中纤维运动的规律,借助数值模拟软件Rocky DEM 2022R1和ANSYS Fluent 2022R1模拟了28 mm的棉纤维在输纤通道、滑移面和凝聚槽内的运动,结合气流场云图、纤维运动控制方程对棉纤维的速度、加速度、形态变化进行分析。结果表明,纤维在纺纱器的速度呈先增后不变的规律;纤维在输纤通道的速度为22~27.4 m/s,纤维形态不会有大幅度变化;纤维在转杯内的速度为27.4~115.5 m/s,纤维在凝聚槽由多段小幅度弯折状态,转变为完全伸直紧贴凝聚槽壁面的状态。通过数值模拟分析纤维速度和形态变化的根本原因,可从理论上为生产优化和设计解决方法提供指导,对转杯纺输纤通道、转杯等关键部件的设计具有一定参考意义。

关键词: 转杯纺, 纤维运动, 流固耦合, 纤维模型, 受力分析

Abstract:

Objective Rotor spinning is based on the transportation of fibers using airflow as a carrier. However, the core spinning assembly is a closed entity, and the spinning process cannot be directly observed. With the help of numerical simulation, the movement behavior of fibers in the spinning machine can be observed and analyzed in order to address the instability of the spinning process and provide optimization solutions, and to reduce fiber waste in production. This study is also an effort yo enhance the understanding of the theoretical basis for rotor spinning of yarns.

Method The fiber motion trajectory was modelled using the Lagrangian-Euler method by considering the airflow as a continuous phase and the fibers as discrete phases. 3D modeling software SolidWorks 2021 was used to establish a model for the rotor spinning assembly, and the numerical analysis was carried out using Rocky DEM 2022R1 and ANSYS Fluent 2022R1. The airflow field was selected using the Standard k-epsilon turbulence model, Standard Wall Function (SWF), and SIMPLE algorithm. The fiber model was modelled a rod-chain structure, made of cotton fiber with a length of 28 mm.

Results The velocity of the fiber in the fiber transport channel was chosed to be (22-27.4) m/s, with a small increase in velocity and acceleration. The velocity and acceleration were gradually increased along the fiber movement direction. The velocity of the fiber on the slip surface of the rotor was set in the range of (27.4-61.1) m/s. After the fiber tip contacts the slip surface of the rotor, the velocity was increased rapidly. The increase in normal contact force was found to be the main reason for the increase in fiber acceleration. After entering the coagulation tank, the velocity of the fibers was further increased as indicated by the fiber acceleration. After reaching the maximum value of 115.5 m/s, the velocity remained stable.

When the fibers were located in the fiber transport channel, they basically maintained their morphology at the entrance and did not undergo significant morphological changes. After the fiber contacts the sliding surface of the rotor, it moved at a certain angle on the sliding surface and gradually slided towards the condensation groove. When the fiber first entered the condensation tank, it exhibited a multi segment small amplitude bending shape. The small segment bending tended to converge into a large amplitude bending, and was gradually straightened and pressed against the wall of the condensation tank.

Conclusion Numerical simulation software Rocky DEM 2022R1 and ANSYA Fluent 2022R1 were used to simulate rotor spun yarn formation from fibers with cotton fibers of 28 mm in length and 20 μm in fineness. The movement of the straightened cotton fibers in the channel of the rotor spinner was studied, and the velocity distribution, motion trajectory, and morphology of a single fiber at different positions were obtained. Combining theoretical formulae, the reasons for the velocity change of a single fiber were revealed, and the motion and morphology changes of the fibers in the rotor spinner were deeply explored. The results of this study provides some theoretical guidance for design and optimization of rotor spinning production, and has certain reference significance for the design of key components such as the fiber conveying channel and rotor in rotor spinning.

Key words: rotor spinning, motion of fiber, fluid solid coupling, fibre model, force analysis

中图分类号: 

  • TS111

图1

转杯纺纺纱器几何模型及尺寸 注:↘为输纤通道入口;↓为引纱管入口;↑为转杯负压出口。"

表1

气流场模拟模型参数"

类别 名称 类型 数值
ICEM
网格划分
网格数量 四面体网格 994 135
FLUENT
模拟
输纤通道入口 速度入口 10 m/s
引纱管入口 压力入口 0 Pa
转杯出口 压力出口 -7 000 Pa
转杯 旋转壁面 65 000 r/min
湍流模型 Standard k-epsilon模型
求解方法 SIMPLE
控制 二阶迎风式

图2

柔性直纤维示意图"

图3

时间与纤维线速度、与纺纱器壁面的相互作用力及与加速度的关系图"

图4

纺纱器气流云图"

图5

a~d时刻纺纱器内的纤维形态变化示意图"

图6

d~f时刻纤维在纺纱器内的形态变化"

图7

纤维位于凝聚槽内不同位置时的受力分析图"

图8

纤维在达到速度最大值的受力分析图"

[1] 郭臻, 李新荣, 卜兆宁, 等. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(5):131-135.
GUO Zhen, LI Xinrong, BU Zhaoning, et al. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning[J]. Journal of Textile Research, 2019, 40(5): 131-135.
[2] 杨瑞华, 何闯. 纤维在转杯和输纤通道中的运动模拟[J]. 丝绸, 2022, 59(7):40-48.
YANG Ruihua, HE Chuang. Simulation of fiber movement in the rotor and fiber transport channel[J]. Journal of Silk, 2022, 59(7):40-48.
[3] PEI Z G, ZHANG Y, ZHOU J. A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flow[J]. Journal of Fluids and Structures, 2018, 80: 37-38.
[4] 邓茜茜, 杨瑞华. 输棉通道位置对转杯纺纤维运动的影响[J]. 丝绸, 2020, 57(8): 42-49.
DENG Qianqian, YANG Ruihua. Effect of fiber transport channel position on fiber motion in rotor spinning[J]. Journal of Silk, 2020, 57(8): 42-49.
[5] 林惠婷, 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(2): 55-61.
LIN Huiting, WANG Jun. Simulation on fiber motion in airflow field of transfer channel[J]. Journal of Textile Research, 2018, 39(2): 55-61.
[6] 熊海浪. 纤维在旋转气流场中的耦合运动机理研究[D]. 杭州: 浙江理工大学, 2022:26-33.
XIONG Hailang. Study on the coupled motion mechanism of fibers in a rotating airflow field[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:26-33.
[7] 龚新霞, 邵秋, 刘林兵, 等. 转杯纺发展现状及成纱关键技术研究[J]. 棉纺织技术, 2023, 51(5):79-84.
GONG Xinxia, SHAO Qiu, LIU Linbing, et al. Rotor spining development status and yarn-forming key technology[J]. Cotton Textile Technology, 2023, 51(5):79-84.
[8] YANG R H, HE C, PAN B, et al. Effect of position of the fiber transport channel on fiber motion in the high-speed rotor[J]. Textile Research Journal, 2021, 91(19-20):2294-2302.
[9] 杨瑞华, 何闯, 龚新霞, 等. 转杯纺分梳排杂区的气流场数值模拟[J]. 纺织学报, 2022, 43(10): 31-37,76.
YANG Ruihua, HE Chuang, GONG Xinxia, et al. Numerical simulation of airflow field in carding and trash removal zone of rotor spinning[J]. Journal of Textile Research, 2022, 43(10): 31-37,76.
[10] SCHMID C F, SWITZER L H, KLINGENBERG D J. Simulations of fiber flocculation: effects of fiber properties and interfiber friction[J]. Journal of Rheology, 2000, 44(4): 781-809.
[11] HOSSEIN K, DEHKORDIA M. Prediction of equilibrium mixing state in binary particle spouted beds: effects of solids density and diameter differences, gas velocity, and bed aspect ratio[J] Advanced Powder Technology, 2015, 26(5):1371-1382.
[12] MARHEINEKE N, WEGENER R. Modeling and application of a stochastic drag for fibers in turbulent flows[J]. International Journal of Multiphase Flow, 2010, 37(2):136-148.
[1] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[2] 方敬兵, 沈敏, 李俊祥, 王真, 余联庆. 纤维束与异形筘内合成气流的相互耦合作用[J]. 纺织学报, 2024, 45(03): 194-201.
[3] 范居乐, 张玉泽, 汪军. 动态牵伸过程中浮游纤维变速点分布模拟[J]. 纺织学报, 2024, 45(03): 44-48.
[4] 李玲, 丁倩, 汪军. 转杯纺并合效应模型的构建与解析[J]. 纺织学报, 2023, 44(12): 43-49.
[5] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[6] 崔月敏, 程隆棣, 和杉杉, 吕金丹, 崔益怀. 基于循环迭代法的牵伸区纤维运动仿真模拟[J]. 纺织学报, 2023, 44(02): 76-82.
[7] 韩万里, 谢胜, 王新厚, 王玉栋. 熔喷气流场中的纤维运动模拟与分析[J]. 纺织学报, 2023, 44(01): 93-99.
[8] 杨瑞华, 何闯, 龚新霞, 陈鹤文. 转杯纺分梳排杂区的气流场数值模拟[J]. 纺织学报, 2022, 43(10): 31-35.
[9] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[10] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[11] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[12] 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114.
[13] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[14] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[15] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!