纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 62-71.doi: 10.13475/j.fzxb.20231000401

• 纺织工程 • 上一篇    下一篇

四基色纤维构建的全色域混色模型及彩色纱纺制

汪燕燕1, 薛元1(), 陈宥融2, 陈国方2   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.浙江泰坦股份有限公司, 浙江 绍兴 311800
  • 收稿日期:2023-10-07 修回日期:2024-03-21 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 薛元(1962—),男,教授,博士。主要研究方向为智能化纺纱技术。E-mail:fzxueyuan@qq.com
  • 作者简介:汪燕燕(1998—),女,硕士生。主要研究方向为数字化纺纱技术。
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划项目(2022C01188)

Full-color gamut mixing model constructed by four-color fibers and its use for color yarn spinning

WANG Yanyan1, XUE Yuan1(), CHEN Yourong2, CHEN Guofang2   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Zhejiang Taitan Co., Ltd., Shaoxing, Zhejiang 311800, China
  • Received:2023-10-07 Revised:2024-03-21 Published:2025-01-15 Online:2025-01-15

摘要: 为在全色域范围内即时调控纱线的成纱颜色,以3种彩色纤维和1种灰色纤维为原料,用耦合-叠加混色的方法构建了四基色耦合-叠加混色模型,基于该混色模型可指导四基色纤维在全色域范围内纺纱;结合三通道数控转杯纺纱原理,构建了协同调控多通道喂入速度比-基色纤维混纺比-成形纱线色彩的三通道转杯纺混色纺纱机制;从全色域混色模型中选择了等彩度不同色相、等色相不同明度、等色相不同彩度3个系列的156个颜色进行纱线和织物的纺制,测量了纱线的HSL值,验证了基于全色域混色模型和三通道数控转杯纺纱平台生产彩色纱的工艺可行性。结果表明:基于全色域网格化混色模型纺制出的混色纱及其织物的色彩变化和全色域混色模型色彩具有一致的变化规律,混色纱的色相角变化范围为0°~360°、明度变化范围为0~1、彩度变化范围为0~1,证明所构建的全色域混色模型可实现从色相、明度、彩度3个维度对成纱颜色进行数字化精准调控。

关键词: 色纺纱, 全色域混色模型, 转杯纺纱, 色彩调控, 数控纺纱

Abstract:

Objective In recent years, colored spun yarn has been developed rapidly because of its unique color blending effect and environmentally friendly production process. However, the current spinning of colored spun yarn primarily relies on the fiber blending ratio and point-to-point color matching of the yarn, lacking a suitable color mixing model to systematically guide the spinning of colored fibers and enable real-time adjustment of the yarn color. In order to address this issue, a full-color gamut gridded color mixing model is established, incorporating the characteristics of three-channel numerical control rotor spinning. This model guides fiber spinning within the full-color gamut range created by four primary colors and regulates the hue, brightness, and saturation of the yarn color across the entire color gamut.

Method First, a four-primary color coupling-superposition mixing model was constructed using three types of colored fibers and one gray fiber as raw materials. This mixing model enabled precise digital control of hue, brightness, and saturation within the entire color gamut, and this model was utilized to guide the spinning of four primary color fibers. Then, by combining the principles of three-channel computer numerical control (CNC) cup spinning, a three-channel cup spinning mixing mechanism was developed to synergistically control the ratios of feeding speeds, blending ratios of primary fibers, and colors of formed yarns. This breakthrough eliminated the barriers between feeding speed ratios, blending ratios of primary fibers, and colors of formed yarns, enabling adjustment of the other two variables based on any one variable. Lastly, a total of 156 colors were selected from the full-color gamut mixing model, including three types, i.e. equal brightness with different hue series, equal hue and different brightness series, and equal hue and different saturation series. Utilizing the three-channel rotor spinning platform, the selected 156 colors were made into mixed color yarns and fabrics with the four primary color fibers. The color changes of the mixed yarns and fabrics were compared with the corresponding type of color spectrums, so as to validate the feasibility of producing mixed color yarns across the full-color gamut utilizing the full-color gamut mixing model in conjunction with the three-channel digitally controlled rotor spinning platform. By measuring the HSL value of the yarn, the feasibility of spinning mixed yarn in the full-color gamut range was further investigated based on the built full color gamut mesh color mixing model.

Results Comparing the images of three types of mixed colored yarns and mixed colored fabrics with the chromatograms of the three types, it was found that the hue changes of mixed colored yarns and fabrics with equal brightness and different hue series were consistent with the chromatograms. The brightness changes of mixed yarns and fabrics with equal hue and different brightness series were consistent with the chromatogram. The saturation changes of mixed yarns and fabrics with equal hue and different saturation series were consistent with the chromatogram. It was evident that based on the full-color gamut grid based color mixing model, the color change trend in the mixed yarns and the fabrics was consistent with the color change trend of the mixed yarn color map, which verified the three-channel rotor spinning mechanism of coordinated control of draft ratio, blending ratio, and yarn color. From the HSL values of the three types of mixed yarns, it was seen that in the first type the hue angle changes from 0° to 360°, and the hue change trend was consistent with the constructed full-color gamut mixing model. In the second type the hue remains basically unchanged, and the chromaticity change trend was consistent with the constructed full-color gamut mixing model. In the third type the hue remains basically unchanged, the brightness change trend was consistent with the constructed full-color gamut mixing model. The feasibility of spinning full-color gamut mixed yarn using the constructed full-color gamut mixing model was verified again from a new perspective. The results showed that the color changes of the mixed yarns and fabrics produced based on the full-color gamut mixing model exhibited consistent patterns with the color changes of the mixed yarn color map. Therefore, spinning mixed yarns over the full-color gamut by adjusting the ratios of feeding speeds, blending ratios of primary fibers, and yarn color was feasible.

Conclusion In summary, based on the full-color gamut mixing model and the three-channel CNC cup spinning platform, the spinning of mixed yarns over the full-color gamut can be practically achieved. The color variation of the mixed yarns and fabrics based on the full-color gamut mixing model aligns with the color variation of the full-color gamut mixing model, exhibiting a consistent pattern. The mixed yarn demonstrates a hue change range of 0°-360°, a brightness change range of 0-1, and a saturation change range of 0-1. This verifies that the constructed full-color gamut mixing model enables online control of yarn color from three dimensions: hue, brightness, and saturation.

Key words: colored yarn, full-color gamut mixing model, rotor spinning, color control, computer numerical control spinning

中图分类号: 

  • TS104.1

图1

与全色域网格化混色模型对应的全色域色谱图"

图2

三通道数控转杯纺纱系统 注:1、2、3为喂给罗拉;4、5、6为胶辊;7为集棉器;8、9为中罗拉;10为分梳辊;11为转杯;12、13为引纱罗拉;14为卷绕罗拉;15为横动成形装置;16为纱管。"

图3

三通道数控纺纱的三要素调控机制"

表1

四基色棉条颜色值"

棉条颜色 Lab值 RGB值
品红(α) (40.14,60.22,5.19) (178,28,89)
青(β) (49.93,-31.34,-25.75) (0,134,162)
黄(γ) (82.04,2.4,86.51) (238,200,0)
灰(o) (93.13,0.2,3.06) (238,235,229)

图4

四基色网格化混色全色域色谱"

图5

3种不同系列混色纱"

图6

3种不同系列针织物"

表2

等明度不同色相系列混色纱的HSL值"

编号 H S L 编号 H S L 编号 H S L
C1,1 337.87 74.48 35.22 C3,1 337.99 70.64 36.64 C7,1 338.62 65.11 38.54
C1,2 331.08 50.10 31.27 C3,2 330.14 44.81 33.49 C7,2 332.35 41.55 37.03
C1,3 325.31 41.85 29.78 C3,3 318.56 31.74 31.49 C7,3 325.19 31.70 35.11
C1,4 313.37 28.73 29.99 C3,4 309.14 25.65 31.18 C7,4 311.35 22.82 34.22
C1,5 283.87 21.90 30.17 C3,5 289.91 22.79 30.45 C7,5 281.97 17.43 35.08
C1,6 263.20 20.41 31.11 C3,6 266.21 19.69 31.97 C7,6 254.25 16.02 36.93
C1,7 227.15 23.85 31.43 C3,7 242.04 17.97 35.22 C7,7 238.85 15.32 38.52
C1,8 213.78 32.96 32.41 C3,8 219.74 27.03 34.69 C7,8 210.55 30.71 34.96
C1,9 198.15 63.51 29.45 C3,9 201.64 54.76 28.61 C7,9 196.74 54.59 32.83
C1,10 192.76 100.00 24.80 C3,10 192.60 96.17 26.64 C7,10 194.12 69.59 31.16
C1,11 190.40 100.00 26.92 C3,11 189.83 100.00 28.35 C7,11 189.04 100.00 29.12
C1,12 184.60 100.00 24.13 C3,12 188.41 100.00 27.13 C7,12 184.75 100.00 27.20
C1,13 175.26 100.00 23.17 C3,13 175.07 100.00 23.46 C7,13 177.05 88.26 26.18
C1,14 162.71 59.99 29.66 C3,14 164.85 64.53 29.15 C7,14 170.72 55.31 32.83
C1,15 154.17 46.32 31.61 C3,15 151.96 34.77 34.61 C7,15 155.30 31.19 40.76
C1,16 121.95 27.80 40.02 C3,16 140.81 35.75 37.19 C7,16 127.33 25.12 42.59
C1,17 120.21 27.04 40.13 C3,17 116.60 28.13 39.74 C7,17 96.97 29.92 42.08
C1,18 73.25 51.19 37.48 C3,18 93.22 33.68 40.07 C7,18 87.00 33.41 42.82
C1,19 67.42 52.47 38.48 C3,19 64.18 56.25 38.45 C7,19 65.45 45.42 42.63
C1,20 63.30 60.62 37.99 C3,20 51.87 100.00 37.49 C7,20 51.26 61.90 45.93
C1,21 45.85 100.00 45.63 C3,21 46.51 100.00 45.89 C7,21 46.58 93.61 47.83
C1,22 31.88 71.93 45.19 C3,22 34.67 76.39 44.74 C7,22 35.17 62.32 50.06
C1,23 24.43 63.58 44.58 C3,23 27.54 66.57 45.03 C7,23 24.68 54.65 47.93
C1,24 17.44 56.24 45.91 C3,24 15.06 49.63 47.44 C7,24 19.54 48.96 49.41
C1,25 16.05 56.68 44.58 C3,25 9.41 48.38 46.31 C7,25 10.81 45.62 48.63
C1,26 6.59 49.90 45.19 C3,26 8.96 51.91 44.54 C7,26 5.67 42.69 47.56
C1,27 0.85 47.68 44.64 C3,27 0.39 46.53 45.82 C7,27 356.75 41.19 47.86
C1,28 0.07 48.78 44.21 C3,28 359.91 45.11 46.17 C7,28 350.90 46.11 44.94
C1,29 350.08 57.42 41.09 C3,29 349.34 57.54 40.65 C7,29 350.31 44.74 46.05
C1,30 343.87 64.90 38.58 C3,30 345.58 60.03 39.85 C7,30 345.17 48.77 44.31

表3

等色相不同彩度系列混色纱的HSL值"

编号 H S L 编号 H S L 编号 H S L
C1,5 283.87 21.90 30.17 C1,15 154.17 46.32 31.61 C1,25 11.05 56.68 44.58
C2,5 285.71 20.70 30.32 C2,15 152.14 30.31 31.94 C2,25 11.78 54.00 44.30
C3,5 289.91 22.79 30.45 C3,15 151.96 34.77 34.61 C3,25 10.41 48.38 46.31
C4,5 286.69 22.03 30.59 C4,15 155.40 44.01 34.68 C4,25 10.44 48.13 46.54
C5,5 288.58 20.32 30.71 C5,15 153.98 34.06 38.15 C5,25 10.52 46.46 47.97
C6,5 289.39 19.05 32.30 C6,15 151.58 35.05 38.37 C6,25 10.95 45.05 47.99
C7,5 281.97 17.43 35.08 C7,15 155.30 31.19 40.76 C7,25 10.81 45.62 48.63
C8,5 284.79 16.21 36.15 C8,15 154.79 33.10 40.52 C8,25 10.44 43.38 50.74
C9,5 283.42 13.02 40.77 C9,15 154.15 28.25 43.81 C9,25 11.00 43.34 55.45
C10,5 287.25 10.05 49.91 C10,15 151.90 20.16 52.25 C10,25 10.82 41.86 57.64

表4

等色相不同明度系列混色纱的HSL值"

编号 H S L 编号 H S L 编号 H S L
C1,1 337.87 74.48 35.22 C1,11 190.40 100.00 26.92 C1,21 45.85 100.00 45.63
C2,1 337.87 72.51 36.72 C2,11 190.36 100.00 27.37 C2,21 46.02 100.00 45.86
C3,1 337.99 70.64 36.64 C3,11 189.83 100.00 28.35 C3,21 46.51 100.00 45.89
C4,1 338.73 63.71 39.11 C4,11 190.10 100.00 28.56 C4,21 46.51 100.00 45.33
C5,1 339.07 60.15 39.94 C5,11 189.78 100.00 28.36 C5,21 46.75 100.00 45.92
C6,1 339.28 57.43 41.05 C6,11 189.25 100.00 28.36 C6,21 46.68 100.00 45.85
C7,1 338.62 65.11 38.54 C7,11 189.04 100.00 29.12 C7,21 46.58 93.61 47.83
C8,1 340.16 47.34 45.46 C8,11 188.78 100.00 29.41 C8,21 44.95 82.35 53.03
C9,1 340.43 40.77 48.67 C9,11 188.64 81.93 33.74 C9,21 44.49 81.85 59.27
C10,1 340.68 39.53 53.18 C10,11 190.33 48.47 44.31 C10,21 44.89 83.12 60.42
[1] 张婷婷, 薛元, 徐志武, 等. 三通道数码纺混色纱色谱体系构建及其彩色纱性能分析[J]. 纺织学报, 2019, 40(9): 48-55.
ZHANG Tingting, XUE Yuan, XU Zhiwu, et al. Color system construction of three-channel digital spinning mixed color yarn and performance analysis of colored yarn[J]. Journal of Textile Research, 2019, 40(9): 48-55.
[2] 章斐燕, 金亦佳, 李启正, 等. 空间并置混色色织物颜色预测方法的比较[J]. 丝绸, 2014, 51(11): 22-27.
ZHANG Feiyan, JIN Yijia, LI Qizheng, et al. Comparison of color prediction methods of yarn-dyed fabrics with spatial juxtaposition[J]. Journal of Silk, 2014, 51(11): 22-27.
[3] 钱爱芬. 色纺纱产品特点及调配色原理[J]. 棉纺织技术, 2010, 38(11): 66-68.
QIAN Aifen. Colored spun yarn characteristic and color mixing & matching principle[J]. Cotton Textile Technology, 2010, 38(11): 66-68.
[4] 曾祥松, 杨晓华, 章友鹤, 等. 我国色纺纱生产技术与产品创新探析[J]. 棉纺织技术, 2022, 50(1): 34-39.
ZENG Xiangsong, YANG Xiaohua, ZHANG Youhe, et al. Analysis on production technology and productinnovation of colored spun yarn in our country[J]. Cotton Textile Technology, 2022, 50(1): 34-39.
[5] 金亚琪, 邹专勇, 许梦露, 等. 色纺纱产品开发现状及技术发展需求[J]. 棉纺织技术, 2012, 40(12): 65-68.
JIN Yaqi, ZOU Zhuanyong, XU Menglu, et al. Development status and technology development demands of colored spun yarn[J]. Cotton Textile Technology, 2012, 40(12): 65-68.
[6] 陈飞荣. 服装材料中色纺纱配色算法改进[J]. 辽东学院学报(自然科学版), 2021, 28(4): 278-284.
CHEN Feirong. Color matching algorithm improvement for colored spun yarn[J]. Journal of Eastern Liaoning University(Natural Science), 2021, 28(4): 278-284.
[7] 潘真祯. 产业链视角下我国色纺纱产业的创新发展研究[D]. 上海: 东华大学, 2022:24-28.
PAN Zhenzhen. Research on the innovative development of the colored spun yarn industry in China from the perspective of industrial chain[D]. Shanghai: Donghua University, 2022:24-28.
[8] 顾燕, 薛元, 高卫东, 等. 采用三通道数码纺的色彩渐变纱性能[J]. 纺织学报, 2018, 39(2): 62-67.
GU Yan, XUE Yuan, GAO Weidong, et al. Analysis of properties of gradient yarns spun by three-channel digital ring spinning[J]. Journal of Textile Research, 2018, 39(2): 62-67.
[9] 薛元, 高卫东, 杨瑞华. 三通道数码纺纱:纱线的柔性数字化加工技术[J]. 纺织导报, 2017(8): 46-50.
XUE Yuan, GAO Weidong, YANG Ruihua. Three-channel digitalized spinning: a flexible digital technology for yarn production[J]. China Textile Leader, 2017(8): 46-50.
[10] 朱文硕, 薛元, 徐志武, 等. 对称循环渐变色彩设计及其色彩渐变纱纺制[J]. 纺织学报, 2022, 43(2): 116-124.
ZHU Wenshuo, XUE Yuan, XU Zhiwu, et al. Symmetrical periodic gradient color design and spinning of gradient-colored yarns[J]. Journal of Textile Research, 2022, 43(2): 116-124.
[11] 薛元, 高卫东, 李杨, 等. 三通道数码纺纱传动系统构建及数控纺纱成形机理机制分析[J]. 纺织导报, 2018(10): 108-112.
XUE Yuan, GAO Weidong, LI Yang, et al. Construction of three channel digital spinning transmission system and analysis on forming mechanism of NC spinning[J]. China Textile Leader, 2018(10):108-112.
[12] XUE Yuan, GAO Weidong, YANG Ruihua, et al. Rotor spinning method and apparatus using three-cotton-sliver asynchronous input and multi-stage carding: WO2017/031612A1[P]. 2017-03-16.
[13] 张震, 薛元, 徐志武, 等. 数码纺循环渐变色纱设计及渐变色织物的织制[J]. 毛纺科技, 2020, 48(11): 12-18.
ZHANG Zhen, XUE Yuan, XU Zhiwu, et al. Design of digital spinning cycle gradient yarn and spinning of gradient fabric[J]. Wool Textile Journal, 2020, 48(11):12-18.
[14] 武臣, 薛元, 高林郁, 等. 五通道数控环锭纺纱系统构建及纺制花式纱机制分析[J]. 毛纺科技, 2020, 48(11): 1-5.
WU Chen, XUE Yuan, GAO Linyu, et al. Construction of numerical control five-channel ring spinning system and analysis of spinning fancy yarn mechanism[J]. Wool Textile Journal, 2020, 48(11):1-5.
[15] ZHU Wenshuo, XUE Yuan, XU Zhiwu, et al. Symmetrical circulation gradient color system construction and gradient color yarn spun by a three-channel numerical control spinning system[J]. Textile Research Journal, 2022, 92: 2046-2060.
[16] SUN Xianqiang, XUE Yuan, CUI Peng, et al. Serialized gradient chromatography for the digital blending of colored fibers and spinning of gradient colored yarn[J]. Textile Research Journal, 2022, 92: 43-58.
[1] 孙显强, 薛元, 刘曰兴, 张国清, 刘立霞. 六基色纤维混纺构建的全色相混色模型及其色纺纱纺制[J]. 纺织学报, 2023, 44(09): 60-67.
[2] 程璐, 马崇启, 周惠敏, 王颖, 夏鑫. 基于视觉特性的色纺纱全光谱配色算法优化[J]. 纺织学报, 2022, 43(10): 38-44.
[3] 朱文硕, 薛元, 徐志武, 于健, 曾德军. 对称循环渐变色彩设计及其色彩渐变纱纺制[J]. 纺织学报, 2022, 43(02): 116-124.
[4] 袁理, 熊莹, 谷迁, 王丹书, 霍达, 刘军平. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(05): 122-129.
[5] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[6] 张婷婷, 薛元, 贺玉东, 刘曰兴, 张国清. 环锭数码纱Kubelka-Munk双常数配色模型构建及其色彩预测[J]. 纺织学报, 2020, 41(01): 50-55.
[7] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[8] 袁理, 王丹书, 谷迁, 屠劭杰, 熊莹, 袁浩然, 刘军平, 鄢煜尘. 基于光谱泛相似测度的色纺纱线与织物间呈色规律[J]. 纺织学报, 2019, 40(02): 30-37.
[9] 刘建勇 黄烨 谭学强. 色纺纱的计算机配色研究进展[J]. 纺织学报, 2018, 39(11): 176-184.
[10] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[11] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[12] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
[13] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[14] 袁理 代乔民 付顺林 鄢煜尘. 结合全局与局部多样性特征的色纺纱色度学指标测试与评价[J]. 纺织学报, 2018, 39(02): 157-164.
[15] 杨瑞华 薛元 郭明瑞 王鸿博 周建 高卫东. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!