纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 10-16.doi: 10.13475/j.fzxb.20241204701

• 特约专栏: 智能纤维与织物器件 • 上一篇    下一篇

Wi-Fi双频织物天线的构建及其电磁性能

李朵1,2,3, 谢晓雯4, 张迪凡4, 吴景霞1,2,3, 陆凯4, 陈培宁1,2,3()   

  1. 1.复旦大学 聚合物分子工程全国重点实验室, 上海 200438
    2.复旦大学 高分子科学系, 上海 200438
    3.复旦大学 纤维电子材料与器件研究院, 上海 200438
    4.中山大学 电子与信息工程学院(微电子学院), 广东 广州 510006
  • 收稿日期:2024-12-20 修回日期:2025-02-03 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 陈培宁(1987—),男,研究员,博士。主要研究方向为智能纤维材料与器件。E-mail: peiningc@fudan.edu.cn
  • 作者简介:李朵(1996—),女,博士生。主要研究方向为柔性电子器件。
  • 基金资助:
    国家重点研发计划项目(2022YFA1203001);国家重点研发计划项目(2022YFA1203002);国家重点研发计划项目(2022YFA1203003);国家自然科学基金项目(T2222005)

Construction and electromagnetic properties of Wi-Fi dual-band fabric antenna

LI Duo1,2,3, XIE Xiaowen4, ZHANG Difan4, WU Jingxia1,2,3, LU Kai4, CHEN Peining1,2,3()   

  1. 1. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
    2. Department of Macromolecular Science, Fudan University, Shanghai 200438, China
    3. Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
    4. School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
  • Received:2024-12-20 Revised:2025-02-03 Published:2025-05-15 Online:2025-06-18

摘要:

面向智能织物对信号传输功能的实际应用需求,为提高电子织物的天线通信功能,以镀银锦纶为导电辐射单元材料,棉织物为介电基底材料,利用电磁仿真软件设计了微带缝隙织物天线结构,通过刺绣构建了具备Wi-Fi双频通信功能的织物天线。借助矢量网络分析仪和天线测试系统对Wi-Fi双频织物天线的电磁性能进行测试和分析,并进一步测试了织物天线弯曲形变下的性能稳定性及透气舒适性。结果表明:Wi-Fi双频织物天线电磁性能与仿真结果基本吻合,能够覆盖2.4 GHz和5.2 GHz 2个频段;此外,织物天线在弯曲形变下仍能保持有效工作频率基本不变,且透气率达67.74 mm/s,与商用织物相当,验证了Wi-Fi双频织物天线在电子织物通信系统中的应用潜力。

关键词: 缝隙织物天线, 电子织物, 智能可穿戴, 刺绣, 电磁性能, 无线通信

Abstract:

Objective Electronic fabrics hold significant potential applications in wearable devices and smart healthcare. Antenna, as a critical component for the emission and reception of electromagnetic waves, plays a pivotal role in enabling wireless signal transmission in future electronic textiles. In order to address these application requirements, it is essential to develop textile antennas which not only exhibit superior electromagnetic properties, such as wide bandwidth and high gain, but also maintain air permeability and comfort.
Method The microstrip slot fabric antenna structure was designed utilizing electromagnetic simulation software. Through the digital weaving method, the dual-band Wi-Fi fabric antenna was constructed by arranging silver-coated nylon fibers in a specific configuration on a cotton substrate. The electromagnetic performance of the Wi-Fi dual-band fabric antenna was evaluated and analyzed. Additionally, the stability and permeability of the fabric antenna were rigorously examined.
Results The dual-band Wi-Fi fabric antenna proposed was sufficient to cover the 2.4 GHz to 5.2 GHz working frequency bands of Wi-Fi. The measured and simulated results of dual-band Wi-Fi fabric antenna radiation pattern was basically consistent. Moreover, at the frequency of 2.4-5.2 GHz, the specific absorption rate of human tissue was simulated when the antenna was 5 mm away from human tissue. The maximum specific absorption rate of human tissue was 0.831 W/kg and 0.515 W/kg, respectively, lower than the standard value (1.6 W/kg), indicating that the designed antenna has good human safety. In order to verify the stability of dual-band Wi-Fi fabric antenna at bending deformation, the reflection coefficient curves of the antenna under different bending angles were studied. The results showed that the resonant frequency was slightly shifted, but the bandwidth of the antenna was wide enough to cover the Wi-Fi frequency between 2.4 GHz and 5.2 GHz, thus enabling stable working of the antenna. Furthermore, the wearing comfort of dual-band Wi-Fi fabric antenna was studied. The air permeability of the fabric antenna and the commercial cotton fabric with the same thickness were found to be in the same order of magnitude, which indicates that the air permeability of dual-band Wi-Fi fabric antenna can meet the comfort requirements of human body in the daily wearing process.
Conclusion Electromagnetic simulation software is adopted to simulate the structure of dual-band Wi-Fi fabric antenna, and the dual-band Wi-Fi fabric antenna was prepared from silver-coated nylon fibers and cotton fabric through the digital weaving. The performance test of dual-band Wi-Fi fabric antenna proves that the antenna can work effectively in the Wi-Fi dual-band of 2.45 GHz and 5.2 GHz. The fabric antenna can still maintain stable electromagnetic performance when bent, and has good air permeability and human safety. This research has shown great application potential in the field of electronic fabric, which provides a new solution for the wireless communication function of electronic fabric.

Key words: slot fabric antenna, electronic fabric, smart wearable, embroidery, electromagnetic property, telecommunication

中图分类号: 

  • TN101.8

图1

Wi-Fi双频织物天线的结构示意图"

图2

双频织物天线的结构演变过程示意图"

图3

双频织物天线的尺寸信息"

图4

Wi-Fi双频织物天线的比吸收率分布仿真结果 注:f表示频率。"

表1

人体组织的电磁特性参数表"

人体组织 介电常数 电导率/(S·m-1) 密度/(kg·m-3)
皮肤 35.11 3.72 1 100
脂肪 4.95 0.29 910
肌肉 48.48 4.96 1 041

图5

Wi-Fi双频织物天线正面与反面及细节照片"

图6

Wi-Fi双频织物天线反射系数的实测和仿真结果"

图7

Wi-Fi双频织物天线增益的实测和仿真结果"

图8

Wi-Fi双频织物天线辐射方向图的实测和仿真结果"

图9

Wi-Fi双频织物天线弯曲时的反射系数"

图10

Wi-Fi双频织物天线摩擦前后的反射系数"

图11

Wi-Fi双频织物天线水洗前后的反射系数"

[1] YANG Weifeng, LIN Shaomei, GONG Wei, et al. Single body-coupled fiber enables chipless textile electronics[J]. Science, 2024, 384(6691): 74-81.
doi: 10.1126/science.adk3755 pmid: 38574120
[2] YU He, ZHANG Shiliang, LIAN Yunlu, et al. Electronic textile with passive thermal management for outdoor health monitoring[J]. Advanced Fiber Materials, 2024, 6(4): 1241-1252.
[3] SHI Xiang, ZUO Yong, ZHAI Peng, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
[4] ALI Usman, ULLAH Sadiq, KAMAL Babar, et al. Design, analysis and applications of wearable antennas: a review[J]. IEEE Access, 2023, 11: 14458-14486.
[5] AHMAD Ashfaq, FAISAL Farooq, ULLAH Sadiq, et al. Design and SAR analysis of a dual band wearable antenna for WLAN applications[J]. Applied Sciences, 2022, 12(18):9218-9238.
[6] SALLEH Shakhirul Mat, AIN Mohd Fadzil, AHMAD Zulkifli, et al. Stretchable and bendable poly-dimethylsiloxane-silver composite antenna on PDMS/air gap substrate for 5G wearable appli-cations[J]. IEEE Access, 2023, 11: 133623-133639.
[7] SOMASUNDARAM Arulmurugan, TR Suresh Kumar, SIDÉN Johan, et al. Wearable dual-band dual-polarized screen-printed fabric antenna enabled with electromagnetic bandgap structure for ISM and WLAN communications[J]. International Journal of Communication Systems, 2024, 6001: 1099-1114.
[8] LIN Rongzhou, KIM Han Joon, ACHAVANANTHADITH Sippanat, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems[J]. Nature Communications, 2022, 13(1): 2190-2200.
doi: 10.1038/s41467-022-29859-4 pmid: 35449159
[9] ALONSO González Leticia, VER Hoeye Samuel, FERNÁNDEZ García Miguel, et al. Fully textile-integrated microstrip-fed slot antenna for dedicated short-range communications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2262-2270.
[10] ALONSO-GONZALEZ Leticia, VER-HOEYE Samuel, FERNANDEZ-GARCIA Miguel, et al. On the development of a novel mixed embroidered-woven slot antenna for wireless applications[J]. IEEE Access, 2019, 7: 9476-9489.
[11] SAMAL Purna B, CHEN Shengjian Jammy, FUMEAUX Christophe. Wearable textile multiband antenna for WBAN applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1391-1402.
[12] 杨文博, 卢玉斌. 基于基片集成波导的双频缝隙天线设计[J]. 激光与光电子学进展, 2024, 62(9):1690-1700.
YANG Wenbo, LU Yubin. Design of dual-frequency slot antenna based on chip-integrated waveguide[J]. Progress in Laser and Electro-Optics, 2024, 62(9):1690-1700.
[13] SALLAM Mai O, KANDIL Sara M, VOLSKI Vladimir, et al. Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMax systems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4274-4277.
[14] GAO Guoping, YANG Chen, HU Bin, et al. A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(2):288-292.
doi: 10.1109/LAWP.2018.2889117
[15] ZHAI Huiqing, MA Zhihui, HAN Yu, et al. A compact printed antenna for triple-band WLAN/WiMAX applications[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 65-68.
[16] ASHYAP Adel, RAAD Raad, TUBBAL Faisel, et al. Highly bendable AMC-based antenna for wearable applications[J]. IEEE Access, 2024, 12: 154195-154211.
[17] MEMON Abdul Wahab, DE PAULA Igor Lima, MALENGIER Benny, et al. Breathable textile rectangular ring microstrip patch antenna at 2.45 GHz for wearable applications[J]. Sensors, 2021, 21(5):3996-4019.
[1] 姜亚龙, 李格格, 薛璐, 程宇, 杨应奎. 织物锂电池电极与器件构筑研究进展[J]. 纺织学报, 2025, 46(05): 77-88.
[2] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[3] 佘叶美, 彭阳阳, 王法猛, 潘如如. 基于经编间隔织物的柔性压力传感器制备及其性能[J]. 纺织学报, 2025, 46(03): 158-166.
[4] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[5] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[6] 陆彤, 唐虹, 赵敏. 刺绣心电电极设计与性能分析[J]. 纺织学报, 2024, 45(09): 70-77.
[7] 王建萍, 邵熠萌, 杨雅岚, 何苑溪. 针迹类型对表面肌电用刺绣型织物电极性能影响[J]. 纺织学报, 2024, 45(07): 55-62.
[8] 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247.
[9] 卿星, 肖晴, 陈斌, 李沐芳, 王栋. 纤维晶体管器件研究进展[J]. 纺织学报, 2024, 45(04): 33-40.
[10] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243.
[11] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[12] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[13] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[14] 姚琳涵, 张颖, 姚岚, 郑晓萍, 魏文达, 刘成霞. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(09): 84-90.
[15] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!