纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 195-201.doi: 10.13475/j.fzxb.20240502001

• 染整工程 • 上一篇    下一篇

耐热仿生结构色织物的制备及其性能

魏志强, 刘新华()   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2024-05-10 修回日期:2025-02-08 出版日期:2025-05-15 发布日期:2025-06-18
  • 通讯作者: 刘新华(1964—),男,教授,硕士。主要研究方向为功能高分子材料。E-mail: liuxinhua66@163.com
  • 作者简介:魏志强(1998—),男,硕士生。主要研究方向为先进纤维及纺织印染加工技术。
  • 基金资助:
    国家自然科学基金项目(21302001);安徽省自然科学基金项目(1908085QE225)

Preparation and properties of heat resistant bionic structural color fabrics

WEI Zhiqiang, LIU Xinhua()   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2024-05-10 Revised:2025-02-08 Published:2025-05-15 Online:2025-06-18

摘要:

针对有机纳米微球结构色耐热稳定性差的问题,采用乳液聚合法以苯乙烯(St)、甲基丙烯酸缩水甘油酯(GMA)和二乙烯基苯(DVB)为主要原料合成了交联型聚(苯乙烯-二乙烯基苯-甲基丙烯酸缩水甘油酯(P (St-DVB-GMA))纳米微球,并采用雾化沉积法在涤纶织物上构建结构色。对P(St-DVB-GMA)纳米微球的化学结构进行表征,探讨非离子与阴离子表面活性剂的不同质量比对P (St-DVB-GMA)纳米微球粒径及结构色的影响,并测定结构色的耐热稳定性、耐水洗色牢度和耐摩擦色牢度。结果表明:成功合成了245、332和398 nm 这3种不同粒径的P (St-DVB-GMA)纳米微球,采用雾化沉积法可在涤纶织物上形成蓝色、紫色和绿色3种结构色;且结构色在200 ℃下处理仍保持鲜艳的颜色,其耐热稳定性得到显著提高;同时结构色织物具有一定的耐水洗色牢度和耐摩擦色牢度。

关键词: 结构色, 纳米微球, 耐热稳定性, 涤纶织物

Abstract:

Objective Structural colors have received increasing attention in the textile industry. Colloidal microspheres are commonly adopted to prepare structural colors including organic and inorganic microspheres. Compared with inorganic microspheres, organic microspheres have better industrial application prospects. However, the poor thermal stability of organic microspheres restricts the practical application. Therefore, the cross-linked poly(styrene-divinylbenzene-glycidyl methacrylate) (P(St-DVB-GMA)) microspheres were synthesized aiming to improve the thermal stability of structural color fabrics. This study is expected to provide a basis for solving the problem of poor thermal stability of organic microspheres.
Methods The cross-linked P(St-DVB-GMA) microspheres were synthesized by emulsion polymerization using styrene (St), glycidyl methacrylate (GMA) and divinylbenzene (DVB), which were adopted to construct structural color on polyester fabrics using atomization deposition method. The chemical structure of P(St-DVB-GMA) microspheres was characterized, and the influence of different mass ratios of non-ionic/anionic surfactants on particle sizes and structural colors of P(St-DVB-GMA) microspheres was investigated. The thermal stability, washing color fastness and rubbing color fastness of the structural color fabrics were evaluated.
Results P(St-DVB-GMA) microspheres with three different particle diameters of 245, 332, and 398 nm were obtained by adjusting the mass ratio of nonionic surfactant CO897 to sodium dodecyl sulfate (SDS) (ratios of 4.3:1, 4.0:1, and 3.3:1) during the emulsion polymerization. These microspheres were assembled into amorphous photonic crystals with short range order and long range disorder on the polyester fabric surface via atomization deposition to obtain blue, purple, and green structural colors. These structural colors on fabrics did not change with the view angles from 30°to 90°, showing the non-iridescent structural color. The color of P(St-DVB-GMA) structural color fabrics was gradually lightened with the increase of temperature from 60 ℃ to 200 ℃. However, the color did not disappear completely at 200 ℃, and still a more obvious structural color on appeared on the fabric surface. The reflectance peak of P(St-DVB-GMA) structural color fabric did not change, but the reflectivity at peak decreased gradually with the increase of treatment temperature. The peak reflectivity of the structural color fabric treated at 200 ℃ was reduced by about 5%. The results showed that the P(St-DVB-GMA) structural color maintained good stability at 200 ℃. The reason about these may be because of the difference of the glass transition temperatures (Tg) between them. The Tg of P(St-DVB-GMA) significantly increased to 150 ℃ because of introduction of the crosslinking agent DVB. The reflectance curve of the structural color fabric after washing was basically the same as that before washing, but the reflectivity at peak decreased by about 0.27% compared with that before washing. The results showed that the P(St-DVB-GMA) microspheres structural color fabrics had excellent washing colorfastness. The color of the P(St-DVB-GMA) microspheres structural color fabrics did not obvious change after 1, 10, 30, 50 cycles of rubbing compared with that before rubbing, indicating excellent rubbing color fastness of the structural color fabrics.
Conclusion Crosslinked P(St-DVB-GMA) microspheres were prepared by introducing the DVB through the emulsion polymerization. Three types of P(St-DVB-GMA) microspheres with different particle sizes were prepared by changing the mass ratio of surfactant CO897 and SDS during the synthesis process, so as to obtain blue, purple and green structural colors on the polyester fabric. The thermal stability of P(St-DVB-GMA) structural color fabric was obviously improved, attributing to the increase of Tg of P(St-DVB-GMA) microspheres by introducing crosslinking agent DVB. The P(St-DVB-GMA) microspheres structural color fabrics demonstrated excellent washing and rubbing color fastness because of the presence of reactive epoxy group in P(St-DVB-GMA) microspheres. This study provides the research basis for solving the problem of poor thermal stability of organic microspheres structural color, and provides ideas for the preparation of heat-resistant structural color materials.

Key words: structural color, microsphere, thermal stability, polyester fabric

中图分类号: 

  • TS193.6

图1

P(St-DVB-GMA)的红外光谱图"

图2

P (St-DVB-GMA)纳米微球粒径分布图"

图3

不同放大倍数下P (St-DVB-GMA) 纳米微球结构色织物的SEM照片"

图4

不同粒径P (St-DVB-GMA) 纳米微球结构色织物的照片"

图5

不同颜色结构色织物的反射率曲线"

图6

不同观察角度下的结构色织物"

图7

P (St-DVB-GMA)纳米微球玻璃化转变温度"

图8

不同温度下P (St-DVB-GMA)纳米微球的耐热性能"

图9

不同温度结构色反射率曲线"

图10

结构色织物水洗前后效果对比"

图11

结构色织物水洗前后反射率曲线"

图12

结构色织物耐摩擦性能"

[1] 屠立涛, 王晓辉, 梁小慧, 等. 光子晶体结构生色织物的喷涂法制备及其光学性质[J]. 染整技术, 2023, 45(6): 15-22.
TU Litao, WANG Xiaohui, LIANG Xiaohui, et al. Preparation and optical properties of colored fabric with photonic crystal structure by spraying method[J]. Dyeing & Finishing Technology, 2023, 45(6): 15-22.
[2] 王晓辉, 李义臣, 刘国金, 等. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(2): 12-20.
WANG Xiaohui, LI Yichen, LIU Guojin, et al. Preparation and optical properties of flexible photonic crystal structure color film[J]. Journal of Textile Research, 2021, 42(2): 12-20.
[3] VUKUSIC P, SAMBLES J R. Photonic structures in biology[J]. Nature, 2003, 424(6950): 852-855.
[4] HOU Jue, LI Mingzhu, SONG Yanlin. Patterned colloidal photonic crystals[J]. Angewandte Chemie International Edition, 2018, 57(10): 2544-2553.
[5] FANG Yinchun, YAN Peng, ZHANG Qin, et al. Preparation of Janus structural colors with different hydrophilicity by spraying hydrophobic P (HFBMA-co-GMA) microspheres on polydopamine modified cotton fabrics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI:10.1016/j.colsurfa.2024.133386.
[6] LIU Xinhua, YAN Peng, FANG Yinchun. Structural coloration of polyester fabrics with high colorfastness by copolymer photonic crystals containing reactive epoxy groups[J]. ACS Omega, 2021, 6(42): 28031-28037.
doi: 10.1021/acsomega.1c04057 pmid: 34723003
[7] LIU Xinhua, WU Jun, FANG Yinchun, et al. Atomization deposition fabricating angle-independent structural colored fabrics with outstanding stability, hydrophobicity, flexibility and breathability[J]. Dyes and Pigments, 2024. DOI:10.1016/j.dyepig.2024.112199.
[8] LOVELL P A, SCHORK F J. Fundamentals of emulsion polymerization[J]. Biomacromolecules, 2020, 21(11): 4396-4441.
[9] 王少杰. 用于快速构筑耐热型光子晶体的结构基元制备及其在纺织基材上的应用[D]. 杭州: 浙江理工大学, 2021: 47-68.
[10] WANG Shaojie. Fabrication of structural elements for rapid construction of heat-resistant photonic crystals and its application on textile substrates[D]. Hangzhou: Zhejiang University of Technology, 2021: 47-68.
[11] LIU Xinhua, WU Jun, YAN Peng, et al. Bio-inspired fabrication of non-iridescent structural color coatings with excellent color fastness for rapid and large-scale colorization of textile[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. 10.1016/j.colsurfa.2024.133964.
[12] LIU Panmiao, CHEN Jialun, ZHANG Zexi. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J]. Nanoscale, 2018, 10(8): 3673-3679.
doi: 10.1039/c7nr08056e pmid: 29327029
[13] LAI Chiuchun, LUO Haowen, WU Changmou, et al. Surface-activity of anionic-nonionic surfactants and the dispersibility of TiO2 particles in aqueous solution[J]. Modern Physics Letters B, 2019. DOI:10.1142/S0217984919400013.
[14] ZHENG Yue, CAICEDO-CASSO E A, DAVIS C R, et al. Impact of mixed surfactant composition on emulsion stability in saline environment: anionic and nonionic surfactants[J]. Journal of Dispersion Science and Technology, 2023, 44(7): 1103-1115.
[15] 朱小威, 韦天琛, 邢铁玲, 等. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(9): 90-96.
ZHU Xiaowei, WEI Tianchen, XING Tieling, et al. Preparation and numerical simulation of amorphous photonic crystal structured colored fabrics[J]. Journal of Textile Research, 2021, 42(9): 90-96.
[16] 李义臣. 柔性纺织基材表面结构生色光子晶体的稳定性及快速大面积组装研究[D]. 杭州: 浙江理工大学, 2021: 65-73.
LI Yichen. Stability and rapid large-area assembly of chromogenic photonic crystals on surface structure of flexible textile substrates[D]. Hangzhou: Zhejiang Science and Technology University, 2021: 65-73.
[17] LI Gang, LENG Meiying, WANG Shancheng, et al. Printable structural colors and their emerging applications[J]. Materials Today, 2023. 133-159.
[18] WEI Tianchen, ZHU Xiaowei, HOU Xueni, et al. Preparation of biomimetic non-iridescent structural color based on polystyrene-polycaffeic acid core-shell nanospheres[J]. RSC Advances, 2022, 12(6): 3602-3610.
doi: 10.1039/d1ra08691j pmid: 35425342
[19] 姚明, 宁天明, 姜志国. 耐热型聚苯乙烯微球的制备[J]. 高分子材料科学与工程, 2017, 33(10): 121-124.
YAO Ming, NING Tianming, JIANG Zhiguo. Endurance of polystyrene microsphere preparation[J]. Journal of Polymer Science and Engineering, 2017(10): 121-124.
[20] FANG Yinchun, CHEN Lvxin, ZHANG Yalan, et al. Construction of Cu2O single crystal nanospheres coating with brilliant structural color and excellent antibacterial properties[J]. Optical Materials, 2023. DOI:10.1016/j.optmat.2023.113724.
[1] 赵祥璐, 方寅春, 李伟. 超疏水自清洁结构色织物的制备及其性能[J]. 纺织学报, 2025, 46(04): 154-161.
[2] 殷连博, 李家炜, 段慧敏, 宋理想, 陈玉霜, 厉巽巽, 戚栋明. 液体分散染料染色废水的循环染色[J]. 纺织学报, 2025, 46(03): 131-140.
[3] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[4] 朱琳, 王展鹏, 吴宝宅, 汪少朋, 刘一鸣, 代成娜, 陈标华. 废旧涤纶织物的溶剂萃取剥色及其对醇解的影响[J]. 纺织学报, 2025, 46(01): 103-110.
[5] 史芷丞, 张玉, 于鸿, 马桂玲, 陈凤翔, 徐卫林. 仿生结构生色技术及其在纺织领域应用的研究进展[J]. 纺织学报, 2024, 45(08): 241-249.
[6] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[7] 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150.
[8] 顾佳, 张振雄, 韩颖, 胡建臣, 张克勤. 基于光子晶体结构生色纤维的研究进展[J]. 纺织学报, 2023, 44(04): 212-221.
[9] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[10] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[11] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[12] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[13] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[14] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[15] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!