纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 103-110.doi: 10.13475/j.fzxb.20240705501

• 纺织工程 • 上一篇    下一篇

羊毛纱经编整经损伤及其有限元模拟

韩智慧1, 万爱兰1(), 洪亮2, 高丽忠3, 夏风林1   

  1. 1 江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2 江阴市傅博纺织有限公司, 江苏 无锡 214400
    3 鄂尔多斯资源股份有限公司, 内蒙古 鄂尔多斯 017099
  • 收稿日期:2024-07-23 修回日期:2025-04-22 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 万爱兰(1976—),女,副教授,博士。主要研究方向为纺织材料与智能纺织品。E-mail: ailan.wan@jiangnan.edu.cn
  • 作者简介:韩智慧(1998—),男,硕士生。主要研究方向为短纤纱在经编方面的应用。
  • 基金资助:
    内蒙古自治区科技计划项目(2023YFKL0001)

Damage analysis and finite element simulation of wool yarn in warping

HAN Zhihui1, WAN Ailan1(), HONG Liang2, GAO Lizhong3, XIA Fenglin1   

  1. 1 College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2 Jiangyin Fubo Textile Co., Ltd., Wuxi, Jiangsu 214122, China
    3 Ordos Resources Co., Ltd., Ordos, Inner Mongolia 017099, China
  • Received:2024-07-23 Revised:2025-04-22 Published:2025-07-15 Online:2025-08-14

摘要:

为研究羊毛纱在经编整经过程中受到的损伤状况,以3种含有羊毛、羊绒和锦纶短纤维的紧密赛络纺纱线为原料,并以整经机为试验平台取样测试并进行研究分析。测试3种羊毛纱线整经前后的力学性能以及毛羽指数等,建立整经实测张力与纱线强力损失及质量损耗关系数学模型,分析并预测整经张力对其性能的影响,采用有限元建模模拟及验证整经张力和分纱筘、KFD纱线张力补偿制动器对羊毛纱的损伤情况。结果表明:3种纱线强力分别为163.9、153.6、95.8 cN,在经过4道分纱筘后分别下降了12.0%、10.7%、8.2%,由于纱线与各道分纱筘摩擦导致已有毛羽脱落与纱线表层纤维被抽拔同时发生,因此纱线毛羽指数无规律变化,但纱线质量下降。根据数学模型得出,当整经张力为20 cN,整经速度为300 m/min、张力辊孔位为第2孔位或在整经速度为400 m/min、张力辊孔位为第1孔位时,纱线质量和强力损失较小。对比有限元建模及测试数据得出当整经张力大于30 cN、伸长大于0.8%时会因毛羽集结、纱线纠缠等问题造成无法整经。对羊毛纱整经及经编顺利生产具有较好的理论参考和现实意义。

关键词: 整经损伤, 羊毛纱, 强力, 毛羽, 数学模型, 有限元模拟

Abstract:

Objective In order to study the damage of wool yarn in the process of warping for warp knitted fabrics, the study focused on the warping tension and the influence of machine parts on the hairiness index and mechanical properties of wool yarn, using the yarn leasing reed as an example, aiming to understand the damage of wool yarn during warping and provide insights for the utilization of wool yarn.

Methods Three types of compact Siro-spun yarns prepared from wool, cashmere, and nylon staple fibers were selected. The warping machine served as the experimental platform for sampling, testing, and analysis. The mechanical properties and hairiness index of the three types of yarns were tested before and after warping. A mathematical model was developed to analyze and predict the influence of warping tension on yarn performance based on the relationship between tension, yarn strength loss, and mass loss. The damage to wool yarn caused by warping tension, reed, and KFD yarn tension compensation brake was simulated and validated using finite element modeling.

Results Three types of wool yarn were tested after warping on the warping machine. These included yarn A (70% wool and 30% polyamide, 16.7 tex), yarn B (60% wool, 30% polyamide and 10% cashmere, 16.7 tex), and yarn C (60% wool, 30% polyamide and 10% cashmere, 12.5 tex) which were subjected to tight Siro spinning. The study revealed that the mechanical properties and hairiness index of the yarn were influenced by the friction between the reed of the warping machine and the yarn. Yarns A, B, and C experienced a decrease in strength by 12.0%, 10.7% and 8.2%, respectively. Additionally, due to shedding and the generation of new hairiness during continuous friction with the reed, the hairiness index fluctuated, leading to an overall weight decrease. During the warping process, if the yarn warping tension exceeded 30 cN and the elongation surpassed 0.8%, warping failure could occur due to hairiness aggregation, yarn entanglement and other factors. At the same time, the relationship between yarn strength, mass, and warping tension adhered to asymptotic, Boltzmann, and other mathematical models. Based on the model curve, it was deduced that when the warping tension was 20 cN and the warping speed was 300 m/min, the tension roller hole selection should be the second hole position; or when the warping speed was 400 m/min, the tension roller hole selection should be the first hole position. Under these conditions of warping tension and speed, both warping efficiency and quality could be guaranteed. By establishing the equivalent model of wool yarn, the finite element method was utilized to simulate the warping process and further investigate the damage of wool yarn. The simulation results were compared with the actual scenario to replicate the morphological changes of the yarn during warping and confirm the warping of the yarn under various tension and elongation conditions. This study provided a valuable experimental and theoretical foundation for examining short fiber yarn for warp knitting and exploring yarn damage during the warping process.

Conclusion The relationship between mechanical properties and hairiness index was established. According to the mathematical model, when the warping tension was 20 cN and the warping speed was 300 m/min, the tension roller hole selection was the second hole position, or when the warping speed was 400 m/min, the tension roller hole selection was the first hole position. Under these conditions, the weight loss and strength loss were kept minimal. By comparing the finite element modeling with test data, it was deduced that warping would be hindered when the warping tension exceeded 30 cN and the elongation surpassed 0.8% due to hairiness aggregation, yarn entanglement and the like. the like This method allowed for the preliminary screening of warping yarn, offering a theoretical foundation for the warping process.

Key words: warping damage, wool yarn, strength, hairiness, mathematical model, finite element simulation

中图分类号: 

  • TS184.3

图1

取纱示意图"

表1

羊毛纱线试验设计方案"

水平 纱线种类 张力辊孔位 整经速度/(m·min-1)
1 A 1 20
2 B 2 200
3 C 300
4 400

表2

纤维长度设置"

纤维种类 纤维直径/μm 纤维长度/mm
羊绒 15 30、40
羊毛 15 60、40
锦纶 15 60、80

图2

有限元仿真示意图"

图3

分纱筘对纱线强力的影响"

图4

分纱筘对3种纱线毛羽的影响"

表3

分纱筘对纱线质量的影响"

纱线
种类
第1道
分纱筘
第2道
分纱筘
第3道
分纱筘
第4道
分纱筘
纱线A 16.58 16.17 16.04 15.88
纱线B 16.49 16.39 16.31 15.47
纱线C 11.89 11.81 11.63 11.45

表4

整经速度及张力辊孔位对整经张力的影响"

整经速度/(m·min-1) 第1孔位张力/cN 第2孔位张力/cN
20 7 11
200 13 16
300 17 20
400 20 24

图5

整经张力对纱线断裂强力的关系及数据拟合"

图6

整经张力对纱线质量的关系及数据拟合"

表5

材料参数"

纤维
种类
密度/
(g·cm-3)
断裂
伸长率/%
弹性
模量/MPa
泊松比
羊毛 1.34 10.0 2 300 0.24
羊绒 1.36 9.8 2 400 0.23
锦纶 1.39 4.0 3 500 0.37

图7

整经张力与纱线伸长率的关系"

表6

断裂强力与纱线伸长率的关系"

伸长率/% 断裂强力/cN
纱线A 纱线B 纱线C
0.00 11.71 12.47 12.73
0.10 13.99 14.37 14.37
0.20 16.26 16.45 16.72
0.30 18.63 18.68 18.98
0.40 21.05 20.90 21.10
0.50 23.45 23.16 23.46
0.60 25.88 25.42 25.72
0.70 28.33 27.66 27.96
0.80 30.75 29.91 29.99
0.90 33.16 32.17 32.37
1.00 35.57 34.43 34.58

图8

不同张力下纱线整经模拟图 注:a、b、c、d分别为纱线在整经过程中随着张力增加纱线表面变化加剧;f为该张力下纱线整经后的局部形貌图与e纱线整经后实物局部图对照;e为纱线整经过程中的毛羽集结的情况;e2为纱线整经过程中的纤维纠缠的情况。"

[1] 蒋高明, 程碧莲, 万爱兰, 等. 短纤纱经编织物生产关键技术研究进展[J]. 纺织学报, 2022, 43(5):7-11,31.
JIANG Gaoming, CHENG Bilian, WAN Ailan, et al. Research progress in key technologies of spun yarn warp knitting production[J]. Journal of Textile Research, 2022, 43(5):7-11,31.
[2] 许期颐, 陈英群. 为适应高机号经编机改造整经机的方法[J]. 针织工业, 2009(2):15-18.
XU Qiyi, CHEN Yingqun. In order to adapt to the method of reforming warping machine of high-grade warp knitting machine[J]. Knitting Industries, 2009(2):15-18.
[3] HAO G, WAN A. Evaluation of warp knitting and mechanical damage of staple fiber composite yarn[J]. Fibers and Polymers, 2023, 24(10): 3743-3751.
[4] MCGREGOR B A, POSTLE R. Worsted cashmere top and yarns blended with low or high curvature superfine merino wool[J]. Textile Research Journal, 2016, 77(10): 792-803.
[5] LIU X, MIAO X. Analysis of yarn tension based on yarn demand variation on a tricot knitting machine[J]. Textile Research Journal, 2016, 87(4): 487-497.
[6] 王卫, 张佩华, 杨淳, 等. 改善经编用羊毛纱线毛羽的途径[J]. 针织工业, 2009(3):20-22.
WANG Wei, ZHANG Peihua, YANG Chun, et al. Ways to improve wool yarn hairiness for warp knitting[J]. Knitting Industries, 2009(3): 20-22.
[7] MEENA H C, SHAKYAWAR D B, VARSHNEY R K. Low-stress mechanical properties of wool-cotton blended fabrics[J]. Journal of Natural Fibers, 2020, 19(1): 63-77.
[8] MEI D, XIA F, WAN A, et al. Damage characteristics of cotton yarn in high-speed warp-knitting processing from finite element simulation[J]. Fibers and Polymers, 2022, 23(10): 2952-2959.
[9] 谢春萍, 杨丽丽, 苏旭中, 等. 紧密赛络纺集聚效果及纱线结构分析[J]. 纺织学报, 2007, 28(3):9-12.
XIE Chunping, YANG Lili, SU Xuzhong, et al. Analysis of compact Siro spinning agglomeration effect and yarn structure[J]. Journal of Textile Research, 2007, 28(3):9-12.
[10] LU Y, WANG Y, GAO W. Strength distribution superiority of compact-Siro spun yarn[J]. Journal of Engineered Fibers and Fabrics, 2019.DOI:10.1177/1558925019827448.
[11] SRIPRATEEP K, BOHEZ E L J. A new computer geometric modelling approach of yarn structures for the conventional ring spinning process[J]. Journal of The Textile Institute, 2009, 100(3): 223-36.
[12] CYBULSKA M, GOSWAMI B C. Tensile behaviour of staple yarns[J]. Journal of The Textile Institute, 2001, 92(3): 26-37.
[13] MEI D, XIA F, WAN A, et al. Damage characteristics of cotton yarn in high-speed warp-knitting processing from finite element simulation fibers and polymers[J]. 2022, 23: 2952-2959.
[14] ZUBAIR M, NECKÁ$\stackrel{ˇ}{R}$ B, DAS D. Tensile behavior of staple fiber yarns: part II: model validation[J]. The Journal of The Textile Institute, 2016, 108(6): 931-934.
[1] 杨天琪, 任家智, 王旭真, 陈宇恒. 混合精梳纤维卷投料比数学模型构建与应用[J]. 纺织学报, 2025, 46(07): 62-68.
[2] 顾文敏, 蒋高明, 赵俊杰, 李炳贤. 经纬编交织物数字化设计及其三维仿真[J]. 纺织学报, 2025, 46(07): 119-127.
[3] 姚一婷, 敖利民, 张展望, 苏友朋. 针织呢绒织物绒面性质的测试方法[J]. 纺织学报, 2025, 46(03): 100-108.
[4] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[5] 关松松, 蒋高明, 杨美玲, 李炳贤. 基于线圈结构的双针床经编毛绒织物三维仿真[J]. 纺织学报, 2024, 45(09): 84-90.
[6] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[7] 吴佳庆, 郝新敏, 王美慧, 郭亚飞, 王迎. 粗纱物理特性对环锭纺细纱机后区牵伸效果影响[J]. 纺织学报, 2024, 45(04): 76-82.
[8] 向忠, 赵唯, 何仕伟, 王宇航, 钱淼. 双组分织物含水率的微波谐振腔法测量技术[J]. 纺织学报, 2024, 45(04): 221-228.
[9] 陶静, 汪俊亮, 张洁. 数据驱动与有限元仿真融合的纱线断裂强力分析方法[J]. 纺织学报, 2024, 45(02): 238-245.
[10] 高波, 吴菊明, 朱博, 王静安, 高卫东. 浆纱烘燥过程改善毛羽贴伏的方法及其效果[J]. 纺织学报, 2023, 44(12): 67-72.
[11] 谷元慧, 王曙东, 张典堂. 基于多尺度模型的编织复合材料圆管扭转行为有限元模拟[J]. 纺织学报, 2023, 44(12): 88-95.
[12] 骆春旭, 龚浩然, 吴敏勇, 黄丛, 刘可帅. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11): 61-66.
[13] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[14] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[15] 周濛濛, 蒋高明. 玻璃纤维衬经衬纬纬编管状织物的制备及其拉伸性能[J]. 纺织学报, 2023, 44(07): 132-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!