纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 96-102.doi: 10.13475/j.fzxb.20240903401

• 纺织工程 • 上一篇    下一篇

负载MXene的棉/氨纶导电包芯纱制备及其传感性能

贾潞, 周苏秦, 郭龙灿, 刘淑强(), 张瑜   

  1. 太原理工大学 轻纺工程学院, 山西 晋中 030600
  • 收稿日期:2024-09-19 修回日期:2025-01-20 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 刘淑强(1981—),男,副教授,博士。主要研究方向为新型功能纺织品。E-mail: liushuqiang8866@126.com
  • 作者简介:贾潞(1990—),女,讲师,博士。主要研究方向为天然纤维的功能化改性及智能化应用。
  • 基金资助:
    山西省基础研究计划(青年)项目(20210302124684);山西省省筹资金资助回国留学人员科研项目(2023-49)

Preparation of MXene-coated cotton/spandex conductive core yarn and its sensing properties

JIA Lu, ZHOU Suqin, GUO Longcan, LIU Shuqiang(), ZHANG Yu   

  1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2024-09-19 Revised:2025-01-20 Published:2025-07-15 Online:2025-08-14

摘要:

为提高导电材料与弹力纱线的结合牢度,采用亲水性良好的棉纤维和具有弹性的氨纶混纺制备包芯纱,利用浸轧法结合纱线改性技术将二维过渡金属碳/碳化物(MXene)包覆在棉/氨纶包芯纱上,得到可用于应变传感的负载MXene的棉/氨纶导电包芯纱。并对导电包芯纱的形貌和结构进行表征与分析,研究其力学性能、导电性能以及应变传感性能。结果表明,MXene以化学结合的方式对棉/氨纶包芯纱进行包覆,赋予纱线导电性,并提高其力学性能;捻度为133 捻/(10 cm)的导电包芯纱呈现出较好的可拉伸性及导电性(54 kΩ),同时具有良好的应变响应稳定性和灵敏性(灵敏度为28.1),可用于监测人体运动,在智能纺织品、人工智能等领域具有广阔的应用前景。

关键词: 棉/氨纶包芯纱, 改性棉纤维, 传感纱线, MXene, 应变传感

Abstract:

Objective The ideal yarn sensor is both conductive and elastic. The bonding between the conductive layer and the elastic polymer fiber is usually weak, and after repeated stretching, the reduced bonding between the conductive material and the polymer matrix and the detachment of the conductive layer will seriously affect its sensing performance. Therefore, how to improve the bonding fastness of the conductive layer and the yarn is one of the challenges in ensuring the sensing stability.

Method Cotton fibers with good hydrophilicity and spandex with elasticity were blended to prepare core yarns with different levels of twists, then the cotton/spandex core yarns were modified with 3-(aminopropyl) triethoxysilane, and MXene-coated conductive cotton/spandex yarns were prepared by coating MXene using the dip-rolling method. The morphology and structure of the conductive core yarns were characterized, and their mechanical properties, electrical conductivity and tension sensing properties were investigated.

Results Cotton fiber was used as the sheath and spandex as the core to prepare the cotton/spandex core yarns with different twist levels. The characterizations by Fourier transform infrared spectrometer, Raman spectroscopy and water washing resistance showed that 3-(aminopropyl)triethoxysilane successfully modified cotton fibers by amination, and MXene was mainly grafted onto the surface of cotton fibers by chemical bonding. SEM images showed that the diameter of the core yarn was 0.7-0.8 mm, which also proved that MXene coated the cotton fibers to form a dense conductive layer. The chemical bonding between MXene and the cotton fibers resulted in a certain enhancement of the yarn breaking strength, and the strength of the MXene-coated cotton/spandex core yarns gradually increased as the yarn twist icreased. In addition, the MXene coating of the yarns also endowed good conductive properties to the yarns. As the twist of the core yarns was increased, the electrical resistance demonstrated a gradual decrease, with a minimum resistance of 54 kΩ. The strain-relative resistance change curve of MXene-coated cotton/spandex core yarns with a twist of 133 twists/(10 cm) showed linear sensing with a linearity of 0.996, a sensitivity of 28.1, and the sensing stability is good. The obtained sensing yarns were attached to the joints of fingers, elbows and knees for motion monitoring, and the R/R0 values fluctuated stably between 0.1 and 1.7, indicating that they can be used for monitoring the trajectory and amplitude of limb movements.

Conclusion Hydrophilic cotton fibers with good hydrophilicity and spandex with elasticity were adopted to prepare core yarns, and MXene was encapsulated within cotton/spandex core yarns by dip-rolling with yarn modification technology to obtain MXene-coated cotton/spandex core yarns. MXene and modified cotton fibers produced stable chemical bonding. When the yarn twist is 133 twists/(10 cm), the mechanical properties and electrical conductivity of the MXene-coated cotton/spandex core yarn are better. The above core yarn shows good sensing properties and can be used for monitoring movements such as fingers, elbows and knees. The study of MXene-coated cotton/spandex core yarn provides a new idea for the study of sensing yarn and sensing fabric based on natural fibers.

Key words: cotton/spandex core yarn, modified cotton fiber, sensing yarn, MXene, strain sensing

中图分类号: 

  • TS106.4

图1

负载MXene的棉/氨纶导电包芯纱示意图"

图2

MXene和3组纱线的FT-IR图"

图3

MXene和3组纱线的拉曼光谱图"

图4

M/KCS纱线经不同洗涤次数后照片"

图5

棉/氨纶包芯纱在不同放大倍数下的SEM照片"

图6

不同捻度棉/氨纶包芯纱以及负载MXene的棉/氨纶导电包芯纱的断裂强力"

图7

不同捻度M/KCS的电阻"

图8

不同捻度M/KCS在0%~30%应变下的相对电阻变化率"

图9

133 捻/(10 cm)负载MXene的棉/氨纶导电包芯纱在10%、20%、30%应变下拉伸/回复电阻比"

图10

133 捻/(10 cm)M/KCS的100次拉伸循环稳定性"

图11

M/KCS对人体不同部位的运动监测"

[1] TANG J, WU Y, MA S, et al. Fabricating a smart clothing system based on strain-sensing yarn and novel stitching technology for health monitoring[J]. Science China Technological Sciences, 2024(67): 587-596.
[2] LI S, ZHANG Y, LIANG X, et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management[J]. Nature Communications, 2022, 13 (1): 5416.
doi: 10.1038/s41467-022-33133-y pmid: 36109531
[3] LI H, TAN P, RAO Y, et al. E-Tattoos: toward functional but imperceptible interfacing with human skin[J]. Chemical Reviews, 2024, 124 (6): 3220-3283.
doi: 10.1021/acs.chemrev.3c00626 pmid: 38465831
[4] PANG Y, XU X, CHEN S, et al. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots[J]. Nano Energy, 2022, 96: 107137.
[5] LU L, JIANG C, HU G, et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 2021, 33 (16): 2100218.
[6] YE X, SHI B, LI M, et al. All-textile sensors for boxing punch force and velocity detection[J]. Nano Energy, 2022, 97: 107114.
[7] AGCAYAZI T, CHATTERJEE K, BOZKURT A, et al. Flexible interconnects for electronic textiles[J]. Advanced Materials Technologies, 2018, 3 (10): 1700277.
[8] ZUO H, LI D, HUI D, et al. The multiscale enhancement of mechanical properties of 3D MWK composites via poly(oxypropylene) diamines and GO nanoparticles[J]. Nanotechnology Reviews, 2019, 8 (1): 587-599.
[9] YAN T, WANG Z, WANG Y, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143: 214-223.
[10] 齐琨, 宋玉堂, 苏宇, 等. 石墨烯/微球导电纳米纤维传感纱线的制备及性能[J]. 印染, 2023, 49 (10): 6-11.
QI Kun, SONG Yutang, SU Yu, et al. Preparation and properties of graphene/ microsphere conductive nanofiber sensing yarn[J]. China Dyeing & Finishing, 2023, 49 (10): 6-11.
[11] JANG Y, KIM S, SPINKS G, et al. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems[J]. Advanced Materials, 2019, 32 (5): 1902670.
[12] JIN C, BAI Z. MXene-based textile sensors for wearable applications[J]. ACS Sensors, 2022, 7(4): 929-950.
doi: 10.1021/acssensors.2c00097 pmid: 35322661
[13] DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-sensing textiles[J]. ACS Applied Materials & Interfaces, 2023, 15 (8): 11244-11258.
[14] 艾靓雯, 卢东星, 廖师琴, 等. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(1): 74-82.
AI Jingwen, LU Dongxing, LIAO Shiqin, et al. Preparation and strain sensing properties of yarn sensor prepared by in-situ freezing interfacial polymeri-zation[J]. Journal of Textile Research, 2024, 45(1): 74-82.
[15] 陈宝建, 邢欣, 王淑华. 纱线捻度与捻缩及强力关系的试验分析[J]. 天津纺织科技, 2009(2): 40-45,52-53.
CHEN Baojian, XING Xin, WANG Shuhua. Experimental analysis of the relationship between yarn twist and twist shrinkage and strength[J]. Tianjin Textile Science & Technology, 2009(2): 40-45,52-53.
[16] MALAKI M, VARMA R. Mechanotribological aspects of mxene-reinforced nanocomposites[J]. Advanced Materials, 2020, 32 (38): 2003154.
[1] 陈廷彬, 蒋鑫, 毛海力, 王成成, 张丽平. 双模式热管理功能性纺织品的制备及其性能[J]. 纺织学报, 2025, 46(07): 160-168.
[2] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[3] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[4] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[5] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[6] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[7] 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88.
[8] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[9] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
[10] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[11] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[12] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[13] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[14] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
[15] 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!