纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 96-102.doi: 10.13475/j.fzxb.20240903401
JIA Lu, ZHOU Suqin, GUO Longcan, LIU Shuqiang(
), ZHANG Yu
摘要:
为提高导电材料与弹力纱线的结合牢度,采用亲水性良好的棉纤维和具有弹性的氨纶混纺制备包芯纱,利用浸轧法结合纱线改性技术将二维过渡金属碳/碳化物(MXene)包覆在棉/氨纶包芯纱上,得到可用于应变传感的负载MXene的棉/氨纶导电包芯纱。并对导电包芯纱的形貌和结构进行表征与分析,研究其力学性能、导电性能以及应变传感性能。结果表明,MXene以化学结合的方式对棉/氨纶包芯纱进行包覆,赋予纱线导电性,并提高其力学性能;捻度为133 捻/(10 cm)的导电包芯纱呈现出较好的可拉伸性及导电性(54 kΩ),同时具有良好的应变响应稳定性和灵敏性(灵敏度为28.1),可用于监测人体运动,在智能纺织品、人工智能等领域具有广阔的应用前景。
中图分类号:
| [1] | TANG J, WU Y, MA S, et al. Fabricating a smart clothing system based on strain-sensing yarn and novel stitching technology for health monitoring[J]. Science China Technological Sciences, 2024(67): 587-596. |
| [2] |
LI S, ZHANG Y, LIANG X, et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management[J]. Nature Communications, 2022, 13 (1): 5416.
doi: 10.1038/s41467-022-33133-y pmid: 36109531 |
| [3] |
LI H, TAN P, RAO Y, et al. E-Tattoos: toward functional but imperceptible interfacing with human skin[J]. Chemical Reviews, 2024, 124 (6): 3220-3283.
doi: 10.1021/acs.chemrev.3c00626 pmid: 38465831 |
| [4] | PANG Y, XU X, CHEN S, et al. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots[J]. Nano Energy, 2022, 96: 107137. |
| [5] | LU L, JIANG C, HU G, et al. Flexible noncontact sensing for human-machine interaction[J]. Advanced Materials, 2021, 33 (16): 2100218. |
| [6] | YE X, SHI B, LI M, et al. All-textile sensors for boxing punch force and velocity detection[J]. Nano Energy, 2022, 97: 107114. |
| [7] | AGCAYAZI T, CHATTERJEE K, BOZKURT A, et al. Flexible interconnects for electronic textiles[J]. Advanced Materials Technologies, 2018, 3 (10): 1700277. |
| [8] | ZUO H, LI D, HUI D, et al. The multiscale enhancement of mechanical properties of 3D MWK composites via poly(oxypropylene) diamines and GO nanoparticles[J]. Nanotechnology Reviews, 2019, 8 (1): 587-599. |
| [9] | YAN T, WANG Z, WANG Y, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143: 214-223. |
| [10] | 齐琨, 宋玉堂, 苏宇, 等. 石墨烯/微球导电纳米纤维传感纱线的制备及性能[J]. 印染, 2023, 49 (10): 6-11. |
| QI Kun, SONG Yutang, SU Yu, et al. Preparation and properties of graphene/ microsphere conductive nanofiber sensing yarn[J]. China Dyeing & Finishing, 2023, 49 (10): 6-11. | |
| [11] | JANG Y, KIM S, SPINKS G, et al. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems[J]. Advanced Materials, 2019, 32 (5): 1902670. |
| [12] |
JIN C, BAI Z. MXene-based textile sensors for wearable applications[J]. ACS Sensors, 2022, 7(4): 929-950.
doi: 10.1021/acssensors.2c00097 pmid: 35322661 |
| [13] | DAI Y, QI K, OU K, et al. Ag NW-embedded coaxial nanofiber-coated yarns with high stretchability and sensitivity for wearable multi-sensing textiles[J]. ACS Applied Materials & Interfaces, 2023, 15 (8): 11244-11258. |
| [14] | 艾靓雯, 卢东星, 廖师琴, 等. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(1): 74-82. |
| AI Jingwen, LU Dongxing, LIAO Shiqin, et al. Preparation and strain sensing properties of yarn sensor prepared by in-situ freezing interfacial polymeri-zation[J]. Journal of Textile Research, 2024, 45(1): 74-82. | |
| [15] | 陈宝建, 邢欣, 王淑华. 纱线捻度与捻缩及强力关系的试验分析[J]. 天津纺织科技, 2009(2): 40-45,52-53. |
| CHEN Baojian, XING Xin, WANG Shuhua. Experimental analysis of the relationship between yarn twist and twist shrinkage and strength[J]. Tianjin Textile Science & Technology, 2009(2): 40-45,52-53. | |
| [16] | MALAKI M, VARMA R. Mechanotribological aspects of mxene-reinforced nanocomposites[J]. Advanced Materials, 2020, 32 (38): 2003154. |
| [1] | 陈廷彬, 蒋鑫, 毛海力, 王成成, 张丽平. 双模式热管理功能性纺织品的制备及其性能[J]. 纺织学报, 2025, 46(07): 160-168. |
| [2] | 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134. |
| [3] | 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48. |
| [4] | 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147. |
| [5] | 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165. |
| [6] | 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233. |
| [7] | 阳腾, 孙志慧, 伍思钰, 于晖, 王飞. 基于聚氨酯/炭黑/锦纶导电纱线的织物应变传感器制备及其性能[J]. 纺织学报, 2024, 45(12): 80-88. |
| [8] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
| [9] | 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238. |
| [10] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
| [11] | 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125. |
| [12] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
| [13] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
| [14] | 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143. |
| [15] | 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102. |
|
||