纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 119-125.doi: 10.13475/j.fzxb.20230603301

• 纺织工程 • 上一篇    下一篇

聚吡咯/氨纶长丝的应变传感性能与应用

王博1,2, 刘美亚1, 陈明娜2, 宋孜灿2, 夏明1, 李沐芳1, 王栋1()   

  1. 1.武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2023-06-15 修回日期:2023-11-07 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 王栋(1979—),男,教授,博士。主要研究方向为先进纤维材料及其交叉学科应用。E-mail:wangdon08@126.com
  • 作者简介:王博(1992—),男,讲师,博士。主要研究方向为导电纤维材料的传感及储能应用。
  • 基金资助:
    国家重点研发计划项目(2022YFB3805803);湖北省高等学校优秀中青年科技创新团队项目(T2021007);湖北省教育厅科学研究计划指导性项目(B2022078)

Strain-sensing performance of polypyrrole/polyurethane filaments and application

WANG Bo1,2, LIU Meiya1, CHEN Mingna2, SONG Zican2, XIA Ming1, LI Mufang1, WANG Dong1()   

  1. 1. Key Laboratory of Textile Fibers and Products, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2023-06-15 Revised:2023-11-07 Published:2024-02-15 Online:2024-03-29

摘要:

为制备应用于运动监测方面的柔性拉伸应变传感器,探索拉伸型应变传感材料自身长度及拉伸应变对运动监测效果的影响,将表面聚合吡咯的氨纶长丝裁剪成不同长度进行循环拉伸测试,通过扫描电子显微镜和红外光谱仪对氨纶长丝和聚吡咯/氨纶长丝的微观形貌及化学结构进行表征,并测试分析了不同长度的聚吡咯/氨纶长丝在不同速率下拉伸不同应变时的电力学性能。结果表明:通过原位聚合可使聚吡咯完全覆盖氨纶长丝表面,所得聚吡咯/氨纶长丝在500%的应变范围内应力最高可达21.0 MPa;灵敏度值在0%~63%和118%~243%应变范围内分别为1.82和43.3,在800 mm/min速率下拉伸10%应变的响应时间为200 ms。为探索聚吡咯/氨纶长丝与实际应用的匹配性,测试了不同长度聚吡咯/氨纶长丝在连续循环拉伸过程中的电阻变化,归纳其电阻变化特性,并将有效长度1 cm的聚吡咯/氨纶长丝固定在食指第2关节处以监测手指关节的重复弯曲。

关键词: 导电长丝, 应变传感器, 聚吡咯, 氨纶, 传感材料, 适用性

Abstract:

Objective Flexible strain sensor shows broad application prospects in human-computer interaction, electronic skin, intelligent wearables and other aspects. Many researchers have spared no effort to study the materials for the improvement of sensing performance. However, sufficient attention to the applicability of the sensors is still lacking in terms of the sensing parameters such as sensor's size, applied strain, tensile rate. In this study, the polyurethane thread coated with polypyrrole (PPy/PU) filament via in-situ polymerization was used as strain sensor, and the sensor length, strain, and tensile rate were investigated to conclude a suitable parameter for the monitoring of the index finger bending.

Method Because the group of organic molecular is responsive to the infrared light and each group exhibits their unique vibration forms, Fourier transform infrared (FT-IR) spectrometer was used to identify the materials. FT-IR (BRUKER Vertex 70) was used to characterize the groups of the PPy/PU filament with wavenumber from 4 500 to 400 cm-1. Scanning electron microscope (JEOL JSM-7800F) based on secondary electrons imaging was used to observe the surface morphologies of PU filament and PPy/PU filament. Also, electronic universal material testing machine (Instron 5976) and electrochemical workstation (CHI-660e) were combined to investigate the resistance variation and sensing performance of the PPy/PU filament.

Results The FT-IR characteristic peaks for PU filament were detected, which showed that they almost disappeared after the in-situ polymerization of PPy, indicating the favorable covering of the conductive layer. The FE-SEM images also demonstrated the full deposition of PPy on the PU fibers. The prepared PPy/PU filament exhibited a resistance of 268.9 Ω per centimeter, indicated two linear response region including 0-63% strain and 118%-243% strain with Gauge Factor values of 1.82 and 43.3 respectively, and revealed a short response time (200 ms) for 10% strain. Stretched to various strains, PPy/PU filament with different lengths demonstrated that although different initial spacing (i.e. the spacing between the upper and lower fixtures before stretching) may result in different extensions for the same strain, the changes in relative resistance (ΔR/R0) were basically on the same magnitude order, namely, the change in ΔR/R0 was determined by tensile strain rather than tensile length. It was also found that although the same strain required more stretching length for the longer samples, their variation of ΔR/R0 was actually smaller, possibly because the longer samples would disperse more force, leading to less changes in conductive channels and less damage to the material. As a result, the longer samples with length of 6 cm exhibited lower increase of ΔR/R0 after 100 cyclic stretching, indicating better stability. However, the low variation of ΔR/R0 during stretching is adverse to signal analysis. As for the monitoring application, sensing materials need to have significant signal changes and relatively stable peak value of ΔR/R0, and its length also needs to match the size of the monitored joints. Therefore, PPy/PU filament with functional length of 1 cm was selected for monitoring of index finger bending, which generated evident signals (one signal peak with one finger bending). Besides, similar signals for multiple bending indicated repeatable monitoring performance of this PPy/PU sensor.

Conclusion This study provides a new viewpoint to the applicability of the sensor materials. The sensing performance is not only determined by the micro-properties (such as doping level, crystallinity, conductivity, and so on) of the materials, but also closely related to its macroscopic elements. Thus, the sensor size should be taken into account in order to avoid unstable or unclear signals. As the PPy/PU exhibits great sensing performance and possesses favorable flexibility inherited from the PU filament, PPy/PU filament is of enormous application potential in the wearable electronics field.

Key words: conductive thread, strain sensor, polypyrrole, polyurethane, sensing material, applicability

中图分类号: 

  • TQ342.83

图1

PU长丝和PPy/PU长丝的红外光谱"

图2

PU长丝和PPy/PU长丝的表面形貌照片"

图3

PU长丝和PPy/PU长丝在拉断过程中的应力-应变曲线"

图4

PPy/PU长丝在拉伸过程中的电响应"

表1

PPy/PU长丝连续拉伸的测试参数及ΔR/R0变化"

序号 拉伸应
变/%
初始间
距/cm
拉伸长
度/cm
拉伸速度/
(mm·min-1)
RS100 RD100
1 25 1 0.25 100 0.295 2.478
2 25 1 0.25 300 0.437 2.103
3 25 3 0.75 200 0.417 2.433
4 25 3 0.75 400 0.275 2.054
5 25 3 0.75 600 0.274 1.991
6 25 6 1.50 200 0.126 2.034
7 25 6 1.50 400 0.137 1.664
8 25 6 1.50 600 0.144 1.549
9 50 1 0.50 100 2.039 2.027
10 50 1 0.50 300 3.660 2.047
11 50 3 1.50 200 3.370 2.082
12 50 3 1.50 400 2.905 2.146
13 50 3 1.50 600 2.947 2.141
14 50 6 3.00 200 0.844 2.251
15 50 6 3.00 400 1.500 2.143
16 50 6 3.00 600 1.911 2.140
17 100 1 1.00 100 16.405 1.777
18 100 1 1.00 300 26.683 1.888
19 100 3 3.00 200 16.944 1.569
20 100 3 3.00 400 13.004 1.554
21 100 3 3.00 600 12.840 1.546
22 100 6 6.00 200 3.420 1.568
23 100 6 6.00 400 2.946 1.419
24 100 6 6.00 600 4.543 1.381

图5

PPy/PU长丝分别以25%、50%、100%应变进行2 000次循环拉伸过程中的电响应曲线"

图6

PPy/PU长丝被拉伸25%、50%、100%应变各2 000次循环后的表面形貌"

图7

PPy/PU长丝作为应变传感器用于监测不同关节活动"

[1] HERZ M, RAUSCHNABEL P A. Understanding the diffusion of virtual reality glasses: the role of media, fashion and technology[J]. Technological Forecasting and Social Change, 2019, 138: 228-242.
doi: 10.1016/j.techfore.2018.09.008
[2] 唐昊阳, 谢国坤, 张育培, 等. 基于用户行为逻辑的智能手环交互设计[J]. 电子技术, 2023, 52(2):290-291.
TANG Haoyang, XIE Guokun, ZHANG Yupei, et al. Design of intelligent bracelet interaction based on user behavior logic[J]. Electronic Technology, 2023, 52(2): 290-291.
[3] 魏志丽, 何应侯, 罗俊彬. 基于STM32单片机的智能健康腕表设计[J]. 机电工程技术, 2023, 52(3):241-245.
WEI Zhili, HE Yinghou, LUO Junbin. Designing a smart health watch with STM32[J]. Mechanical & Electrical Engineering Technology, 2023, 52(3): 241-245.
[4] 王适, 许志. 老年女性心率监测背心功能结构分区设计研究[J]. 针织工业, 2022(6):55-59.
WANG Shi, XU Zhi. Function-based partition design of heart rate monitoring vest for elderly women[J]. Knitting Industries, 2022(6): 55-59.
[5] 王博, 凡力华, 原韵, 等. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10):101-106.
WANG Bo, FAN Lihua, YUAN Yun, et al. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric[J]. Journal of Textile Research, 2020, 41(10): 101-106.
doi: 10.1177/004051757104100203
[6] WANG B, PENG J, YANG K, et al. Multifunctional textile electronic with sensing, energy storing, and electrothermal heating capabilities[J]. ACS Applied Materials & Interfaces, 2022, 14: 22497-22509.
[7] GAO Y, GUO F, CAO P, et al. Winding-Locked carbon nanotubes/polymer nanofibers helical yarn for ul-trastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14: 3442-3450.
doi: 10.1021/acsnano.9b09533
[8] ZHOU J, TIAN G, JIN G, et al. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor[J]. Advanced Functional Materials, 2019.DOI:10.1002/adfm.201907316.
[9] LU L, ZHOU Y, PAN J, et al. Design of helically dou-ble-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability[J]. ACS Applied Materials & Interfaces, 2019, 11: 4345-4352.
[10] 张轩豪, 陈金伍, 刘孙辰星, 等. 基于MXene的应变纤维传感器制备及其表征[J]. 电子器件, 2022, 45(1):117-122.
ZHANG Xuanhao, CHEN Jinwu, LIU Sunchenxing, et al. Preparation and characterization of MXene-based strain fiber sensors[J]. Chinese Journal of Electron Devices, 2022, 45(1): 117-122.
[11] PENG J, WANG B, CHENG H, et al. Highly sensitive and superhydrophobic fabric sensor based on AgNPs/polypyrrole composite conductive networks for body movement monitoring[J]. Composites Science and Technology, 2022. DOI: 10.1016/j.compscitech.2022.109561.
[12] YANG K, CHENG H, WANG B, et al. Highly durable and stretchable Ti3C2Tx/PPy-fabric-based strain sensor for human-motion detection[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202100675.
[13] 刘焘, 邹奉元. 涂碳纤维导电针织物的结构设计及其传感性能[J]. 纺织学报, 2014, 35(9): 31-35,46.
LIU Tao, ZHOU Fengyuan. Structural design and sens-ing performance of conductive knitted fabrics of car-bon coated fiber[J]. Journal of Textile Research, 2014, 35(9): 31-35,46.
[14] ZHANG X, KE L, ZHANG X, et al. Breathable and wearable strain sensors based on synergistic conduc-tive carbon nanotubes/cotton fabrics for multi-directional motion detection[J]. ACS Applied Materials & Interfaces, 2022, 14: 25753-25762.
[15] LU D, LIAO S, CHU Y, et al. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions[J]. Advanced Fiber Materi-als, 2022, 5: 223-234.
[16] LIU Z, LI Z, ZHAI H, et al. A highly sensitive stretcha-ble strain sensor based on multi-functionalized fabric for respiration monitoring and identification[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130869.
[17] ZHU T, LIU L, HUANG J, et al. Multifunctional hy-drophobic fabric-based strain sensor for human motion detection and personal thermal management[J]. Journal of Materials Science & Technology, 2023, 138: 108-116.
[1] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[2] 王雅倩, 万爱兰, 曾登, 吴光军, 祁倩. 形状记忆氨纶/锦纶包覆纱的制备及其压力袜性能[J]. 纺织学报, 2023, 44(10): 53-59.
[3] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
[4] 彭来湖, 罗昌, 戴宁, 胡旭东, 牛冲. 动态恒张力氨纶输送控制研究[J]. 纺织学报, 2023, 44(04): 194-203.
[5] 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105.
[6] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[7] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[8] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[9] 权衡, 任敬之, 陈文龙, 袁辉, 谢南平, 巫若子, 倪丽杰. 有机硅及其共混物在锦纶/氨纶织物上的迁移与分布[J]. 纺织学报, 2022, 43(06): 115-120.
[10] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[11] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[12] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[13] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[14] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[15] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!