纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 87-95.doi: 10.13475/j.fzxb.20240903701

• 纺织工程 • 上一篇    下一篇

芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响

贾陈诺瓦1, 张勇1,2, 朱威岩1, 刘赛1, 唐宁1,2()   

  1. 1 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2 浙江理工大学 象山针织研究院有限公司, 浙江 宁波 315700
  • 收稿日期:2024-09-23 修回日期:2025-01-15 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 唐宁(1990—),女,特聘副教授,博士。主要研究方向为纳米纤维复合材料及其功能化应用。E-mail: tangning@zstu.edu.cn
  • 作者简介:贾陈诺瓦(1999—),女,硕士生。主要研究方向为导电纳米纱线及其功能化应用。
  • 基金资助:
    浙江省自然科学基金项目(LQ24E030005);浙江省自然科学基金项目(LQN25E030002);浙江省重点高校科研启动基金项目(21202241-Y)

Influence of core types on performance of conductive core-spun yarn prepared from polyacrylonitrile nanofibers

JIA Chennuowa1, ZHANG Yong1,2, ZHU Weiyan1, LIU Sai1, TANG Ning1,2()   

  1. 1 College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2 Xiangshan Knitting Research Institude Co., Ltd., Zhejiang Sci-Tech University, Ningbo, Zhejiang 315700, China
  • Received:2024-09-23 Revised:2025-01-15 Published:2025-07-15 Online:2025-08-14

摘要:

为制备具有良好服用性能的纳米纤维导电包芯纱,以静电纺聚丙烯腈(PAN)纳米纤维作为包覆纤维,分别以涤纶纱、芳纶纱、涤纶-棉混纺纱为芯纱,制备3种PAN纳米纤维包芯纱,并利用吡咯原位聚合得到表面负载聚吡咯(PPy)的PAN纳米纤维导电包芯纱,综合比较分析了3种导电包芯纱的形貌结构、力学性能和电学性能的差别。结果表明:芯纱本体结构对导电包芯纱形貌和增重率均有影响,芯纱表面毛羽影响包覆纤维的贴合性,芯纱表面毛羽越少、刚性越弱,纳米纤维包覆越贴合;芯纱毛羽有助于导电包芯纱增重率的增加,相比于PAN纳米纤维/涤纶导电包芯纱(增重率39.29%),PAN纳米纤维/芳纶导电包芯纱和PAN纳米纤维/涤纶-棉导电包芯纱的增重率分别为53.49%和52.63%;此外,纳米纤维导电包芯纱的纱线断裂强力、断裂伸长率和电导率较原纱均有不同程度的提高,其中PAN纳米纤维/涤纶-棉导电包芯纱具有最大的电导率(293.39 mS/cm);在10%形变下循环拉伸2 000次后PAN纳米纤维导电包芯纱电信号输出相对稳定,表现出良好的电力学性能和循环耐用性。

关键词: 导电纱线, 芯纱种类, 聚丙烯腈, 纳米纤维, 包芯纱, 聚吡咯, 静电纺丝

Abstract:

Objective The advent of intelligent wearable products has given rise to novel demands for conductive yarns, wherein high flexibility and remarkable adaptability to the human body are indispensable attributes. Flexible textile circuit made of metal wire ensures reliable electrical conduction but faces challenges in terms of wearing comfort and processability. The aim of this research is to prepare an innovative conductive nanofiber core-spun yarn with superior textile properties, and to investigate the influence of core yarn types on the performance of conductive nanofiber core-spun yarns.

Method A homemade electrostatic spinning device was established for continuous preparation of nanofiber core-spun yarns. During the preparing process, three conventional yarns including polyester yarn, aramid yarn, and polyester-cotton blended yarn were selected as the core yarn, and polyacrylonitrile (PAN) nanofibers were enwrapped on the core yarn through electrospinning. As such, the nanofiber core-spun yarn possessed both high specific surface area of nanofibers and robust mechanical properties of conventional yarn. The conductive nanofiber core-spun yarn with surface supported polypyrrole (PPy) was successfully prepared by further in-situ polymerization of pyrrole. The morphologies, mechanical properties and electrical properties of PPy/PAN nanofiber core-spun yarns were analyzed and characterized. Finally, the PPy/PAN nanofiber core-spun yarns was wrapped on polyurethane yarns and then subjected to 2 000 cycles of stretch deformation at 10% strain to further study the long-term stability under repetitive strain cycles.

Results The morphology of the core yarn was found to have a significant influence on the morphology of the conductive nanofiber core-spun yarn. A lower level of hairiness and stiffness of the core yarn resulted in a superior fit with the nanofibers. In comparison with that of aramid and polyester-cotton blended yarn, nanofibers enwrapped most suitable on polyester core yarn. Especially, the arrangement and orientation of the nanofibers were more superior with polyester as the core yarn. The increased hairiness of the core yarn, however, brought about a notable enhancement in the weight-gain rate of the conductive nanofiber core-spun yarn. Compared with that of conductive PPy/PAN nanofiber/polyester core-spun yarn having 39.29% weight-gain rate, the weight-gain rates of the conductive PPy/PAN nanofiber/aramid core-spun yarn and the conductive PPy/PAN nanofiber/polyester-cotton core-spun yarn were 53.49% and 52.63% respectively. The yarn with polyester core exhibited obvious uniformity and aesthetic appeal after enwrapped with PAN nanofibers, which could be attributed to the significant decrease of the hairiness. The mechanical properties of the core yarn had a decisive effect on the mechanical properties of the conductive nanofiber core-spun yarn, while enwrapping nanofibers loaded with PPy could further enhanced the yarn's breaking strength and elongation at break. Compared with that of the core yarn covered with PPy directly, the electrical properties of the conductive PPy/PAN nanofiber core-spun yarns were significantly improved. The conductivity of the PPy/PAN nanofiber/polyester-cotton core-spun yarn reached 293.39 mS/cm, which was 9.4 times higher than that of polyester yarn covered with PPy directly. The PPy/PAN nanofiber core-spun yarn was further wrapped around the polyurethane yarn and subjected to 2 000 cycles of stretch deformation at 10% strain. Its electrical signal response demonstrated stability, suggesting good consistent electro-mechanical properties and durability over multiple cycles.

Conclusion The morphologies, mechanical properties and electrical properties of PPy/PAN nanofiber core-spun yarns are closely related to the core yarn type. In order to obtain high-strength yarns, it is recommended to selecting aramid yarn as the core material. Polyester yarn may be selected for the purpose of enhancing the elongation at break. Polyester-cotten blended yarn can be employed as the core yarn to improve the conductivity of PPy/PAN nanofiber core-spun yarn. The present work can be adopted to further develop conductive PPy/PAN nanofiber core-spun yarns into different core yarn types, which can be widely used in various fields such as sensors, signal transmission, and interactive textiles. This kind of conductive yarns also has a promising future in the application of flexible and wearable smart devices.

Key words: conductive yarn, core yarn type, polyacrylonitrile, nanofiber, core-spun yarn, polypyrrole, electrospinning

中图分类号: 

  • TS104.7

图1

静电纺丝装置图"

图2

原芯纱及其各个阶段的PPy/PAN纳米纤维导电包芯纱的扫描电镜照片"

图3

涤纶/棉混纺芯纱不同阶段的红外光谱图"

图4

不同基材导电处理后的光学显微镜照片"

图5

纱线的力学性能"

表1

不同基材对所得复合导电纱电阻的影响"

导电纱 平均电阻/Ω 平均半径/μm
涤纶导电纱 55 647.60 231
芳纶导电纱 872.47 1 069
涤纶-棉混纺导电纱 1 287.00 412
PAN纳米纤维/涤纶导电包芯纱 4 356.00 344
PAN纳米纤维/芳纶导电包芯纱 2 476.38 455
PAN纳米纤维/涤纶-棉导电包芯纱 487.24 472

图6

不同基材导电处理后的纱线电导率"

图7

涤纶纱与氨纶纱缠绕的光学显微镜照片"

图8

10%拉伸应变下2 000次拉伸-释放循环图"

[1] XIE Y, CHENG Y, MA Y, et al. 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range[J]. Advanced Science, 2023. DOI: 10.1002/advs.202205303.
[2] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(3): 227-235.
FANG Jin, ZHANG Guangzhi, XU Zhenzhen. Research progress in the application of click chemistry in the preparation of functional Textiles[J]. Journal of Textile Research, 2024, 45(3): 227-235.
[3] CHEN W, CAI M, WU J, et al. Highly conductive, durable, washable, and scalable composite yarn for multifunctional wearable electronic applications[J]. Composites Science and Technology, 2023. DOI: 10.1016/j.compscitech.2023.110115.
[4] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(7): 214-221.
LI Long, ZHANG Xuan, WU Lei. Research progress on preparation methods and applications of conductive yarns[J]. Journal of Textile Research, 2023, 44(7): 214-221.
[5] AHN J, SASIKALA S P, JEONG Y, et al. High-energy-density fiber supercapacitors based on transition metal oxide nanoribbon yarns for comprehensive wearable electronics[J]. Advanced Fiber Materials, 2024. DOI: 10.1007/s42765-024-00462-0.
[6] FAN W, LEI R, DOU H, et al. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor[J]. Nat Commun, 2024. DOI: 10.1038/s41467-024-47810-7.
[7] 陶丽珍, 周锁林, 廖兰兰. 金属长丝复合导电纱的纺制与性能[J]. 现代纺织技术, 2023, 31(2): 130-138.
TAO Lizhen, ZHOU Suolin, LIAO Lanlan. Spinning and properties of metal filament composite conductive yarn[J]. Advanced Textile Technology, 2023, 31(2): 130-138.
[8] WAN Y, QIN N, WANG Y, et al. Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123103.
[9] HEBEISH A, FARAG S, SHARAF S, et al. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose compo-sites[J]. Carbohydrate Polymers, 2016, 151: 96-102.
[10] 缪璐璐, 董正梅, 朱繁强, 等. 芯丝种类与纺纱速度对喷气涡流纺包芯纱性能的影响[J]. 纺织学报, 2023, 44(12): 50-57.
doi: 10.13475/j
MIAO Lulu, DONG Zhengmei, ZHU Fanqiang, et al. Effect of core yarn type and spinning speed on the performance of air-swirl spinning core-spun yarn[J]. Journal of Textile Research, 2023, 44(12): 50-57.
doi: 10.13475/j
[11] 郑姿辰, 唐宁, 王金凤. 导电纱线及柔性传感器耐久性影响因素研究[J]. 丝绸, 2024, 61(1): 52-60.
ZHENG Zichen, TANG Ning, WANG Jinfeng. Study on influencing factors of durability of conductive yarn and flexible sensor[J]. Journal of Silk, 2024, 61(1): 52-60.
[12] ZHOU Y, LIAO H, QI Q, et al. Polypyrrole-coated graphene oxide-doped polyacrylonitrile nanofibers for stretchable strain sensors[J]. ACS Applied Nano Materials, 2022, 5(6): 8224-8231.
[13] 刘志豪, 贾康昱, 钟卫兵, 等. 导电聚吡咯改性机织物及其压力传感性能[J]. 上海纺织科技, 2023, 51(1): 16-19.
LIU Zhihao, JIA Kangyu, ZHONG Weibing, et al. Conductive polypyrrole modified woven fabric and pressure sensing properties[J]. Shanghai Textile Science & Technology, 2023, 51(1): 16-19.
[14] ZHENG Y L, SUN H J, CHENG Y J, et al. A yarn-based sweat-activated battery constructed with conjugated electrospun nanofiber separators as a durable and high-capacity power source in textile electro-nics[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.152414.
[15] HE M, LI A, ZHENG M, et al. Shape-controllable nanofiber core-spun yarn for multifunctional applica-tions[J]. Advanced Fiber Materials, 2024, 6(4): 1138-1151.
[16] 王秀昀, 聂浩宇, 阚丽丽, 等. 聚吡咯导电薄膜原位聚合工艺的研究[J]. 化工新型材料, 2014, 42(11): 184-185,189.
WANG Xiujun, NIE Haoyu, KAN Lili, et al. Study on in situ polymerization of polypyrrole conductive film[J]. New Chemical Materials, 2014, 42(11): 184-185,189.
[17] 刘沙柯, 张腾, 罗重阳, 等. 静电纺丝法对涤纶织物的单面亲水改性[J]. 纺织高校基础科学学报, 2019, 32(2): 147-154.
LIU Shake, ZHANG Teng, LUO Chongyang, et al. Hydrophilic modification of polyester fabric on one side by electrospinning[J]. Basic Sciences Journal of Textile Universities, 2019, 32(2): 147-154.
[18] 姜珊, 万爱兰, 缪旭红, 等. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(8): 95-100.
JIANG Shan, WAN Ailan, MIAO Xuhong, et al. Effect of plasma treatment on the properties of polypyrrole/polyester composite conductive yarns[J]. Journal of Textile Research, 2019, 40(8): 95-100.
[1] 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86.
[2] 贾潞, 周苏秦, 郭龙灿, 刘淑强, 张瑜. 负载MXene的棉/氨纶导电包芯纱制备及其传感性能[J]. 纺织学报, 2025, 46(07): 96-102.
[3] 张利平, 郭羽晴, 丁博, 孙洁. 芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能[J]. 纺织学报, 2025, 46(07): 19-27.
[4] 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45.
[5] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[6] 丁圆, 赵云霞, 靳高岭, 杨涛, 徐静, 柯福佑, 陈烨. 阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能[J]. 纺织学报, 2025, 46(06): 168-177.
[7] 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55.
[8] 丁振华, 袁开宇, 周敬, 叶冬冬. 面向渗透能收集的纤维素纳米流体系统研究进展[J]. 纺织学报, 2025, 46(06): 56-62.
[9] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[10] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[11] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[12] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[13] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[14] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[15] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!