纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 80-87.doi: 10.13475/j.fzxb.20240705401

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性

张嘉诚1, 于影2(), 左雨欣3, 顾志清2, 汤腾飞1, 陈洪立1, 吕勇2   

  1. 1.浙江理工大学 机械工程学院, 浙江 杭州 310018
    2.嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001
    3.嘉兴南湖学院, 浙江 嘉兴 314001
  • 收稿日期:2024-07-22 修回日期:2024-10-25 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 于影(1988—),女,副教授,博士。研究方向为功能化纤维材料制备与柔性电子器件。E-mail:yingyu@zjxu.edu.cn
  • 作者简介:张嘉诚(2000—),男,硕士生。主要研究方向为功能纤维。
  • 基金资助:
    浙江省自然科学基金项目(LGG21E050021);国家自然科学基金项目(52305059)

Torsional sensing characteristics of polyacrylonitrile/MoS2 fiber membranes based on flexoelectric effect

ZHANG Jiacheng1, YU Ying2(), ZUO Yuxin3, GU Zhiqing2, TANG Tengfei1, CHEN Hongli1, LÜ Yong2   

  1. 1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
  • Received:2024-07-22 Revised:2024-10-25 Published:2025-06-15 Online:2025-07-02

摘要: 纤维薄膜的挠曲电效应受到挠曲电材料的显著影响,为探究聚丙烯腈(PAN)/二硫化钼(MoS2)纤维薄膜中MoS2质量分数对其挠曲电响应电流、电压及剪切挠曲电系数的影响规律,利用静电纺丝制备PAN/MoS2纤维薄膜,借助X射线衍射仪、扫描电子显微镜及拉伸试验机对纤维薄膜的结构形貌、元素含量、力学特性等进行表征,基于自行搭建的扭转挠曲电响应测试平台,测试不同MoS2质量分数对PAN/MoS2纤维薄膜挠曲电效应的影响。选用MoS2质量分数为50%的PAN/MoS2纤维薄膜制备扭转传感器研究其对不同扭转角度的响应情况。结果表明:挠曲电流、电压和挠曲电系数随着纤维薄膜中MoS2质量分数的增大而提高,且在MoS2质量分数为50%时挠曲电压、电流和挠曲电系数达到最优,分别为176.41 mV、102.85 pA和34.2 nC/m;PAN/MoS2纤维薄膜扭转传感器能够敏锐感应扭转角度的变化。通过木头人关节处绑缚扭转传感器的应用实验,证实PAN/MoS2扭转传感器能够准确捕捉关节的扭转变化,可为柔性扭转传感器的研发提供新的思路。

关键词: 剪切挠曲电效应, 扭转传感器, 柔性可穿戴传感器, 聚丙烯腈/二硫化钼纤维薄膜, 静电纺丝, 健康监测

Abstract:

Objective Flexible wearable sensors have vast potential applications in the field of healthcare. For example, real-time monitoring of joint torsion in the treatment of elbow and knee arthritis plays a crucial role in the rehabilitation of conditions such as tennis elbow and meniscus injuries. However, current monitoring of joint torsion mainly relies on the traditional optical motion capture methods, which lack real-time capabilities. This research aims to develop flexible wearable torsion sensor devices to meet the joint monitoring needs for treatment of joint-related diseases.

Method Polyacrylonitrile(PAN)/MoS2 fiber membranes were prepared using electrospinning technology, which were then characterized for their structure, morphology, elemental content, and mechanical properties. A custom-built torsional flexoelectric response test platform were used to evaluate the impact of different MoS2 mass fractions on the flexoelectric effect of the PAN/MoS2 fiber membranes. The response of the PAN/MoS2 torsion sensor to various torsion angles was tested, and its practicality was demonstrated by conducting experiments where the torsion sensor was attached to the joints of a wooden mannequin.

Results The microscopic morphology and physical properties of the fiber membranes showed that MoS2 was successfully loaded onto PAN, and the membranes exhibited excellent crystallinity. Pure PAN membranes exhibited a weak flexoelectric effect. However, with the addition of MoS2, the response current and voltage of the fiber membranes was significantly increased with the increase of MoS2 content. When the MoS2 mass fraction reached 50%, the flexoelectric response voltage and current peak were 176.41 mV and 102.85 pA, respectively. When the MoS2 content was further increased to 55%, the response current and voltage drop to 65.61 pA and 97.77 mV. This decline was due to the excessive MoS2 nanoparticles forming aggregates on the PAN surface, which significantly hindered the orderly arrangement of polymer molecular chains and restricts ion migration. As a result, the potential difference generated by the membrane torsion was lower, reducing the flexoelectric coefficient. For torsion angle sensing tests, the PAN/MoS2 fiber membrane with 50% MoS2 was chosen. As the torsion angle increased, the response current and voltage also increased significantly, and the electrical signal waveform remains stable. When the torsion angle was increased from 6° to 30°, the response current and voltage reached a maximum of 183.73 pA and 254.16 mV. This is attributed to the increased shear strain gradient and polarization intensity within the fiber membrane with larger torsion angles. Application experiments with the torsion sensor attached to the joints of a wooden mannequin demonstrated that the PAN/MoS2 torsion sensor was able to accurately capture joint torsion changes.

Conclusion PAN/MoS2 fiber membranes were prepared via electrospinning, successfully loading MoS2 nanoparticles onto the PAN surface. The mass fraction of MoS2 in the PAN/MoS2 fiber membranes significantly would affect their flexoelectric effect. Experiments show that when the MoS2 mass fraction is below 50%, the flexoelectric response current and voltage increase with the MoS2 content. At 50% MoS2 content, the flexoelectric current and voltage reach their optimal levels. However, when the mass fraction exceeds 50%, the MoS2 particles cluster and weaken the flexoelectric effect. Experimental results indicate that the PAN/MoS2 torsion sensor is highly sensitive to changes in torsion angles. Application experiments with the torsion sensor attached to the joints of a wooden mannequin confirm that the PAN/MoS2 torsion sensor can accurately detect joint torsion changes.

Key words: shear flexoelectricity effect, torsion sensor, flexible wearable sensor, polyacrylonitrile/MoS2 fiber membrane, electrospinning, health monitoring

中图分类号: 

  • TQ152

图1

PAN/MoS2纤维薄膜的制备流程示意图"

图2

PAN/MoS2纤维薄膜扭转传感器结构及样品图"

图3

扭转挠曲电响应测试平台及测试过程"

图4

纤维薄膜扭矩传递示意图"

图5

PAN/MoS2纤维薄膜SEM照片及元素分析结果"

图6

PAN/MoS2纤维薄膜结晶结构及力学性能"

图7

不同质量分数PAN/MoS2纤维薄膜的挠曲电响应电流和电压"

图8

PAN/MoS2纤维薄膜不同扭转角度的挠曲电响应电流和电压"

图9

PAN/MoS2纤维薄膜不同扭转速度的挠曲电响应电流和电压"

图10

PAN/MoS2纤维薄膜扭转传感器实际应用"

[1] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21):45-67.
MEN Haijiao, SONG Jianyao, HUANG Bingjing, et al. Recent advances in flexible and wearable strain sensors[J]. Materials Reports, 2023, 37(21):45-67.
[2] LU Yawen, HE Yin, QIAO Jutao, et al. Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55169-55180.
[3] SALMINEN M, PERTTUNEN J, AVELA J, et al. Comparative assessment of heel rise detection for consistent gait phase separation[J]. Heliyon, 2024. DOI: 10.1016/j.heliyon.2024.e33546.
[4] DU Zhe, WANG Tianbing. Knowledge domain and dynamic patterns in multimodal molecular imaging from 2012 to 2021: visual bibliometric analysis[J]. Medicine, 2023. DOI: 10.1097/MD.0000000000032780.
[5] YANG Kerong, ZHANG Senhao, HU Xuhui, et al. Stretchable, flexible, breathable, self-adhesive epidermal hand sEMG sensor system[J]. Bioengineering, 2024. DOI: 10.3390/bioengineering11020146.
[6] MOREIRA K S, LORENZETT E, DEVENS A L, et al. Low-cost elastomer-based flexoelectric devices[J]. Journal of Applied Physics, 2021. DOI: 10.1063/5.0048989.
[7] 梁文静, 吴俊贤, 何崟, 等. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(4): 15-23.
LIANG Wenjing, WU Junxian, HE Yin, et al. Preparation and performance of ion sensor based on composite nanofiber membrane[J]. Journal of Textile Research, 2024, 45(4): 15-23.
[8] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[9] WEI Yujie, YU Ying, ZUO Yuxin, et al. Giant flexoelectric response of uniformly dispersed BT-PVDF composite films induced by SDS-assisted treatment[J]. Iscience, 2023. DOI:10.1109/JSEN.2024.3350748.
[10] WANG Ruichao, YU Ying, ZUO Yuxin, et al. Airflow-induced flexoelectric bending sensors for human breath detection[J]. IEEE Sensors Journal, 2024, 24(5): 5950-5958.
[11] PARK T, KIM N, KIM D, et al. An organic/inorganic nanocomposite of cellulose nanofibers and ZnO nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48239-48248.
[12] CHOI W, HONG J. Rapid electromechanical transduction on a single-walled carbon nanotube film: sensing fast mechanical loading via detection of electrical signal change[J]. Industrial & engineering chemistry research, 2012, 51(45): 14714-14721.
[13] 栗志坤, 于影, 左雨欣, 等. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(5): 27-34.
LI Zhikun, YU Ying, ZUO Yuxin, et al. Analysis flexoelectric effect of polyacrylonitrile/MoS2 composite film and its application[J]. Journal of Textile Research, 2024, 45(5): 27-34.
[14] ZHANG Shuwen, XU Minglong, LIANG Xu, et al. Shear flexoelectric coefficient μ1211 polyvinylidene fluoride[J]. Journal of Applied Physics, 2015. DOI:10.1063/1.4921444.
[15] MEI Qianwen, DING Yaping, LI Li, et al. Electrospun MoS2 composite carbon nanofibers for determination of vanillin[J]. Journal of Electroanalytical Chemistry, 2019, 833: 297-303.
doi: 10.1016/j.jelechem.2018.09.040
[16] 万萌, 虞丹妮, 朱罕, 等. 二硫化钼纳米片/碳纳米纤维杂化材料的制备及其析氢性能[J]. 无机化学学报, 2017, 33(4): 595-600.
WAN Meng, YU Danni, ZHU Han, et al. Synthesis and hydrogen evolution performance of molybdenum disulfide nanosheets/carbon nanofibers hybrid materials[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(4): 595-600.
[17] XIANG Quanjun, YU Jiaguo, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15): 6575-6578.
doi: 10.1021/ja302846n pmid: 22458309
[18] 张靖海, 叶雄英, 周兆英, 等. 最大挠度法测量微薄膜杨氏模量与残余应力[J]. 仪器仪表学报, 1996, 17(S1): 132-135.
ZHANG Jinghai, YE Xiongying, ZHOU Zhaoying, et al. A method to determine the residual stress and Young's modulus of thin films[J]. Chinese Journal of Scientific Instrument, 1996, 17(S1): 132-135.
[19] CAO Shuoang, ZOU Haojie, JIANG Bei, et al. Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107635.
[1] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[2] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[3] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[4] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[5] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
[6] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[7] 陆宁, 陈碧泠, 宋功吉, 罗忆心, 王建南, 许建梅. 纳米纤维在人工神经导管中的应用与研究进展[J]. 纺织学报, 2025, 46(03): 236-244.
[8] 张惠琴, 吴改红, 刘霞, 刘淑强, 赵恒, 刘涛. 生物可降解聚乳酸防护口罩的开发及性能评估[J]. 纺织学报, 2025, 46(03): 116-122.
[9] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[10] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[11] 范梦晶, 岳欣琰, 邵剑波, 陈雨, 洪剑寒, 韩潇. 基于静电纺纤维包芯纱的电容式扭转传感器构建及其传感性能[J]. 纺织学报, 2025, 46(02): 106-112.
[12] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[13] 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8.
[14] 王雅文, 刘娜, 王元非, 吴桐. 静电纺纳米纤维纱线及其对细胞迁移和血管化的调控[J]. 纺织学报, 2024, 45(12): 25-32.
[15] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!