纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 37-45.doi: 10.13475/j.fzxb.20240803101
XU Liya1,2, WANG Zhen3, YANG Hongjie1, WANG Wei1(
)
摘要:
为开发医疗卫生用生物基聚酰胺56(PA56)超细纤维及制品,将纳米氧化锌-银(ZnO-Ag)复合抗菌剂与PA56熔融共混,再经静电纺丝制得ZnO-Ag/PA56纳米纤维膜。采用透射电子显微镜和扫描电子显微镜对ZnO-Ag和ZnO-Ag/PA56复合纳米纤维膜的形貌结构进行表征,并对ZnO-Ag/PA56复合纳米纤维膜的抗菌性能、生物相容性、结晶性能、力学性能及亲水性能进行测试分析。结果表明:ZnO-Ag/PA56复合纳米纤维形态结构圆整,表面ZnO-Ag颗粒分布均匀,无明显团聚现象;随ZnO-Ag质量分数的增加,ZnO-Ag/PA56复合纳米纤维膜的结晶度、拉伸强度及亲水性提高,纤维平均直径减小;当ZnO-Ag质量分数为6%时,ZnO-Ag/PA56复合纳米纤维膜对金黄色葡萄球菌和大肠埃希菌的抑菌率分别达到98.7%和89.3%,且具有良好的生物相容性,有望应用于医疗卫生领域。
中图分类号:
| [1] | 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(4): 26-32. |
| SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields[J]. Journal of Textile Research, 2021, 42(4): 26-32. | |
| [2] | YANG H Y, LIU W T. Bio-based polyamide 56: recent advances in basic and applied research[J]. Polymer Engineering and Science, 2023, 63(8): 2484-2497. |
| [3] | 张施岚. 生物基聚酰胺56织物染色性能研究[D]. 上海: 东华大学, 2020: 5-8. |
| ZHANG Shilan. Study on dyeing properties of bio-based polyamide 56 fabric[D]. Shanghai: Donghua University, 2002:4-8. | |
| [4] | WANG Z, KANG H L, LIN N, et al. Bio-based polyamide 56 fibers by one-step melt-spinning: process, structure and properties[J]. Journal of Applied Polymer Science, 2023. DOI: 10.1002/app.53856. |
| [5] | 黄连香, 王祥荣, 侯学妮, 等. 茜草色素对生物基聚酰胺56的染色性能[J]. 纺织学报, 2024, 45(7): 94-101. |
| HUANG Lianxiang, WANG Xiangrong, HOU Xueni, et al. Dyeing properties of madder pigment on bio-based polyamide 56[J]. Journal of Textile Research, 2024, 45(7): 94-101. | |
| [6] | 丁照轩. 生物基PA56静电纺纳米纤维网形貌调控及其应用[D]. 大连: 大连工业大学, 2021: 52-65. |
| DING Zhaoxuan. Morphology control and application of bio-based PA56 electro-spun nano-fiber network[D]. Dalian: Dalian Polytechnic University, 2021: 52-65. | |
| [7] | XU Yuhan, WANG Jinheng, WANG Zihao, et al. Bio-based polyamide fibers prepared by mussel biomimetic modification of hydroxyapatite[J]. European Polymer Journal, 2023. DOI: 10.1016/j.eurpolymj.2023.111913. |
| [8] | KASTNER J, FAURY T, AUSSERHUBER H M, et al. Silver-based reactive ink for inkjet-printing of conductive lines on textiles[J]. Microelectronic Engineering, 2017, 176: 84-88. |
| [9] |
WALKER S B, LEWIS J A. Reactive silver inks for patterning high-conductivity features at mild temperatures[J]. Journal of the American Chemical Society, 2012, 134(3): 1419-1421.
doi: 10.1021/ja209267c pmid: 22220580 |
| [10] | MA W, LI L, LIN X H, et al. Novel ZnO/n-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31411-31420. |
| [11] | 渠赟, 马维, 刘颖, 等. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(6): 29-36. |
| QU Yun, MA Wei, LIU Ying, et al. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone[J]. Journal of Textile Research, 2022, 43(6): 29-36. | |
| [12] | BHATTARAI R S, BACHU R D, BODDU S H S, et al. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery[J]. Pharmaceutics, 2019. DOI: 10.3390/pharmaceutics11010005. |
| [13] | ZHENG K Y, SETYAWATI M I, LEONG D T, et al. Antimicrobial silver nanomaterials[J]. Coordination Chemistry Reviews, 2018, 357: 1-17. |
| [14] | XUE C F, HSU K M, CHIU C Y, et al. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128967. |
| [15] | YAN Y R, GOONEIE A, YE H X, et al. Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate[J]. Macromolecular Materials and Engineering, 2018. DOI: 10.1002/mame.201800214. |
| [16] | PUIGGALÍ J, FRANCO L, ALEMÁN C, et al. Crystal structures of nylon 5,6: a model with two hydrogen bond directions for nylons derived from odd diamines[J]. Macromolecules, 1998, 31(24): 8540-8548. |
| [17] | 王宇. 生物基聚酰胺56的共混改性及其结晶性能研究[D]. 上海: 东华大学, 2020: 28-30. |
| WANG Yu. Study on blending modification and crystallization properties of bio-based polyamide 56[D]. Shanghai: Donghua University, 2020: 28-30. | |
| [18] | 王宇, 胡红梅, 朱瑞淑, 等. 纳米粉体改性生物基尼龙56的等温结晶动力学[J]. 东华大学学报(自然科学版), 2020, 46(5): 703-711. |
| WANG Yu, HU Hongrnei, ZHU Ruishu, et al. Isothermal crystallization kinetics of nano-powder modified bio-based nylon 56[J]. Journal of Donghua University (Natural Science Edition), 2020, 46(5): 703-711. | |
| [19] | ELTAHIR Y A, SAEED H A M, XIA Y, et al. Mechanical properties, moisture absorption, and dyeability of polyamide 5,6 fibers[J]. Journal of the Textile Institute, 2015, 107(2): 208-214. |
| [1] | 张利平, 郭羽晴, 丁博, 孙洁. 芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能[J]. 纺织学报, 2025, 46(07): 19-27. |
| [2] | 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36. |
| [3] | 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86. |
| [4] | 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95. |
| [5] | 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110. |
| [6] | 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55. |
| [7] | 丁振华, 袁开宇, 周敬, 叶冬冬. 面向渗透能收集的纤维素纳米流体系统研究进展[J]. 纺织学报, 2025, 46(06): 56-62. |
| [8] | 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79. |
| [9] | 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87. |
| [10] | 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95. |
| [11] | 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134. |
| [12] | 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142. |
| [13] | 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150. |
| [14] | 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29. |
| [15] | 张泽祺, 周涛, 周文琪, 范中尧, 杨佳蕾, 陈国印, 潘绍武, 朱美芳. 生理电信号监测用导电纤维及其研究进展[J]. 纺织学报, 2025, 46(05): 70-76. |
|
||