纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 19-27.doi: 10.13475/j.fzxb.20240803401

• 纤维材料 • 上一篇    下一篇

芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能

张利平1,2, 郭羽晴1,2, 丁博1,2, 孙洁1,2()   

  1. 1 江南大学 特种防护纺织品教育部重点实验室, 江苏 无锡 214122
    2 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2024-08-20 修回日期:2025-01-07 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 孙洁(1979—),女,副教授,博士。主要研究方向为功能纺织材料设计。E-mail:sunjie@jiangnan.edu.cn
  • 作者简介:张利平(1999—),女,硕士生。主要研究方向为功能纺织材料设计。
  • 基金资助:
    国家自然科学基金项目(51903109)

Preparation and properties of aramid nanofibers/thermoplastic polyurethane composite microporous membrane and respirable coated fabric

ZHANG Liping1,2, GUO Yuqing1,2, DING Bo1,2, SUN Jie1,2()   

  1. 1 Key Laboratory of Special Protective Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
    2 College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2024-08-20 Revised:2025-01-07 Published:2025-07-15 Online:2025-08-14

摘要: 为探究芳纶纳米纤维(ANF)对热塑性聚氨酯(TPU)膜孔径结构的调节作用,采用非溶剂诱导相分离的方法改变芳纶纳米纤维在铸膜液中的含量,制备了ANF/TPU复合微孔膜系列样品,并对其微观物化结构、透气、透湿以及力学性能进行系统分析。结果表明:ANF的加入使得复合膜的孔径逐渐增大且泡壁上出现较多破孔,进而对膜的透气、透湿和力学性能均产生影响,当ANF质量分数为0.4% 时,复合膜具有优异的力学性能,强度和断裂伸长率分别为1.3 MPa、400%,相比纯TPU膜分别提高了66.7%、17.5%;当ANF质量分数为0.8%时,复合膜具有最高的透气率、透湿率,分别为2.95 mm/s和3 315 g/(m2·d),将此微孔膜与塔丝隆织物复合,制得的覆膜织物兼具良好的气体阻隔性、透湿性以及力学强度,用作户外运动面料具备防水透湿、防风保暖、热湿舒适的特点,具有较好的应用前景。

关键词: 热塑性聚氨酯, 芳纶纳米纤维, 微孔膜, 覆膜织物, 户外运动面料

Abstract:

Objective Thermoplastic polyurethane (TPU) can be prepared into microporous membranes by melt processing or solution processing. Aramid nanofibers (ANF) are nano-sized PPTA aramid fibers with excellent mechanical properties. Both ANF and TPU contain amide bonds. From the existing research, the combination of the two can achieve a better composite effect in theory by establishing multiple interactions such as hydrogen bonds. However, there is still a lack of systematic research in this aspect. Hence, ANF was introduced into the preparation of TPU microporous membrane, and the improvement and regulation of ANF on the structure and properties of TPU microporous membrane were analyzed and discussed, and its application in outdoor sportswear was preliminarily investigated.

Method TPU microporous membrane was prepared by wet scraping method based on the non-solvent induced phase separation technology, using DMF as solvent, ethanol as non-solvent and ANF as modifier. Firstly, the regulation effect of different mass fractions of ANF on the internal pores of TPU microporous membrane was discussed. Then, the best formula was selected to coat the fabric, and the properties of the coated fabric were analyzed to explore the application of the microporous membrane in the development of outdoor windproof and warm-keeping fabrics.

Results The ANF/TPU casting solution exhibited Newtonian fluid behavior at low shear rate, and the dispersion was dominated by viscous behavior, showing a liquid-dominated viscoelastic phase. From the microscopic morphology of the composite membrane, the size of the cell was gradually increased and the connectivity between the cell chambers strengthened as the amount of ANF increased. The BET diagram showed that the pore structure of the composite membrane was irregular, and the addition of ANF led to a decrease in the number of macropores in the microporous membrane. IR spectra and XRD patterns showed that ANF had good compatibility with TPU. The air permeability and moisture permeability of the composite membrane were increased with the increase of ANF, and the decrease of water wettability was not obvious. When the mass fraction of ANF was increased to 0.4%, the breaking strength of the microporous membrane reached the maximum of 1.3 MPa, which was 66.7% higher than that of the untreated microporous membrane. When the content of ANF continued to increase, the tensile strength declined slightly, and the elongation at break also showed a similar trend. The 0.4% ANF/TPU composite membrane was selected to coat the nylon Taslon fabric. From the microscopic morphology map, it was found that the interface between the membrane and the fabric is well combined. The coating treatment gave the fabric a gas barrier to maintain good moisture permeability, which significantly improved the mechanical properties of the fabric. The breaking strength and elongation were increased by 92% and 5.2%, respectively, compared with the original fabric.

Conclusion TPU was blended with ANF, and it was found that ANF could adjust the pore size and connectivity of the microporous membrane. With the increase of ANF content, the pore size of the composite membrane gradually increased, and more pores appeared on the bubble wall. This multi-level microporous structure influenced the air permeability, moisture permeability and mechanical properties of the microporous membrane. The 0.4% ANF/TPU composite membrane had excellent mechanical properties. The breaking strength and elongation at break were 1.3 MPa and 400%, respectively, which were 66.7% and 17.5% higher than those of pure TPU membrane, respectively. As the mass fraction of ANF increased to 0.8%, the air permeability and moisture permeability of the composite membrane continued to increase, and the highest values were 2.95 mm/s and 3 315 g/(m2·d), respectively. The 0.8% ANF/TPU composite film with excellent comprehensive performance was adopted to compound with Taslon fabric. It was found that the breaking strength and elongation of the coated fabric were increased by 92% and 5.2%; respectively, compared with the original fabric, which had a good application prospect in the field of outdoor sports.

Key words: thermoplastic polyurethane, aramid nanofiber, microporous membrane, coated fabric, outdoor sports fabric

中图分类号: 

  • TB34

图1

哑铃样条示意图"

图2

流变性能测试结果"

图3

纯TPU微孔膜的正面、反面、截面微观形貌和截面孔径尺寸"

图4

不同质量分数ANF复合膜的正面、反面、截面微观形貌和截面孔径尺寸"

图5

不同质量分数ANF复合膜比表面积与孔径分布图"

图6

不同质量分数ANF复合膜红外光谱图"

图7

不同质量分数ANF复合膜X射线衍射图"

图8

不同质量分数ANF复合膜透气与透湿性能"

图9

不同质量分数ANF复合膜力学性能"

图10

覆膜织物的微观形貌"

表1

覆膜织物的各项性能指标"

织物 透气率/
(mm·s-1)
透湿率/
(g·m-2·d-1)
接触角/(°) 断裂强度/
MPa
断裂
伸长率/%
正面 反面
0.8% ANF/TPU覆膜织物 4.301 1 870 123.940 67.148 12.45 64.85
织物原样 114.700 1 992 123.940 123.940 6.48 61.65
[1] 王贺兰, 王庆淼, 马皓哲, 等. 膜材料在防护纺织品中的应用[J]. 上海纺织科技, 2023, 51(5): 1-6,44.
WANG Helan, WANG Qingmiao, MA Haozhe, et al. Application of membrane materials in protective textiles[J]. Shanghai Textile Technology, 2023, 51(5): 1-6,44.
[2] 魏咏梅. 热塑性聚氨酯纳米复合材料的性能研究进展[J]. 塑料科技, 2023, 51(3): 111-116.
WEI Yongmei. Research progress in properties of thermoplastic polyurethane nanocomposites[J]. Plastics Technology, 2023, 51 (3): 111-116.
[3] 陈斌, 陈敏, 陈光静, 等. 国内外热塑性聚氨酯材料的技术和应用进展[J]. 聚氨酯工业, 2023, 38(1): 1-5.
CHEN Bin, CHEN Min, CHEN Guangjing, et al. Technology and application progress of thermoplastic polyurethane materials at home and abroad[J]. Polyurethane Industry, 2023, 38 (1): 1-5.
[4] 刘美惠, 沈惠玲. 不同类型聚氨酯微孔膜的制备与性能[J]. 塑料科技, 2018, 46(3): 27-31.
LIU Meihui, SHEN Huiling. Preparation and properties of different types of polyurethane microporous membranes[J]. Plastics Technology, 2018, 46 (3): 27-31.
[5] 代国亮, 郭羽晴, 王刚, 等. 凝固浴对湿法制备聚氨酯微孔膜结构和性能的影响[J]. 纺织高校基础科学学报, 2024, 37(1): 19-25.
DAI Guoliang, GUO Yuqing, WANG Gang, et al. Effect of coagulation bath on the structure and properties of polyurethane microporous membranes prepared by wet method[J]. Journal of Basic Sciences of Textile Universities, 2024, 37 (1): 19-25.
[6] 刘美惠, 沈惠玲. 湿法成膜法制备聚氨酯微孔膜过程中的非溶剂效应[J]. 塑料科技, 2018, 46(1): 32-36.
LIU Meihui, SHEN Huiling. Non-solvent effect in the preparation of polyurethane microporous membranes by wet film forming method[J]. Plastic Technology, 2018, 46 (1): 32-36.
[7] 徐旭凡. PU湿法防水透湿涂层织物的研究[J]. 纺织学报, 2003(6): 75-76.
XU Xufan. Study on PU wet waterproof and moisture permeable coating fabric[J]. Journal of Textile Research, 2003 (6): 75-76.
[8] 刘美惠. 聚氨酯微孔膜的改性与性能研究[D]. 天津: 天津科技大学, 2018:3-5.
LIU Meihui. Study on modification and properties of polyurethane microporous membrane[D]. Tianjin: Tianjin University of Science and Technology, 2018: 3-5.
[9] 赵阳, 王乾乾, 王全杰. 聚氨酯微孔膜改性的研究进展[J]. 西部皮革, 2011, 33(16): 21-24.
ZHAO Yang, WANG Qianqian, WANG Quanjie. Research progress in modification of polyurethane microporous membrane[J]. West Leather, 2011, 33 (16): 21-24.
[10] 王双双. 聚氨酯微孔膜的制备与性能研究[D]. 天津: 天津科技大学, 2019:46-47.
WANG Shuangshuang. Preparation and properties of polyurethane microporous membrane[D]. Tianjin: Tianjin University of Science and Technology, 2019: 46-47.
[11] 赵颖会, 顾迎春, 胡斐, 等. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020, 41(1): 184-189.
ZHAO Yinghui, GU Yingchun, HU Fei, et al. Research progress of aromatic polyamide nanofiber compo-sites[J]. Journal of Textile Research, 2020, 41 (1): 184-189.
[12] 孔祥宇, 耿雪, 曲荣君, 等. 芳纶纳米纤维/聚合物复合材料研究进展[J]. 高分子通报, 2023, 36(9): 1147-1157.
KONG Xiangyu, GENG Xue, QU Rongjun, et al. Research progress of aramid nanofiber / polymer compo-sites[J]. Polymer Bulletin, 2023, 36 (9): 1147-1157.
[13] 任军, 许伟春, 涂春云, 等. 富含酰胺键的自修复聚氨酯的制备及表征[J]. 塑料, 2023, 52(4): 70-75,142.
REN Jun, XU Weichun, TU Chunyun, et al. Preparation and characterization of amide-rich self-healing polyurethane[J]. Plastic, 2023, 52 (4): 70-75,142.
[14] KUANG Q, ZHANG D, YU J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27467-27477.
[15] QIAN K, ZHOU J, MIAO M, et al. Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by Kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding[J] Nano-Micro Letters, 2023. DOI: 10.1007/s40820-023-01062-0.
[16] 刘玲, 周彬, 周红涛. PEDOT/PSS质量分数对纺丝液流变性能及导电纤维可纺性的影响[J]. 塑料工业, 2022, 50(2): 174-178.
LIU Ling, ZHOU Bin, ZHOU Hongtao. Effects of PEDOT / PSS mass fraction on rheological properties of spinning solution and spinnability of conductive fibers[J]. Plastics Industry, 2022, 50 (2): 174-178.
[17] BARDESTANI R, PATIENCE G S, KALIAGUINE S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements: BET, BJH, and DFT[J]. The Canadian Journal of Chemical Engineering, 2019, 97(11): 2781-2791.
[18] HE P, PU H, LI X, et al. CNTs-coated TPU/ANF composite fiber with flexible conductive performance for joule heating, photothermal, and strain sensing[J]. Journal of Applied Polymer Science, 2023. DOI: 10.1002/app.53668.
[19] 宋祖榜. 热塑性聚氨酯/石墨烯/碳纳米管柔性传感器的制备及其性能研究[D]. 福建: 福建工程学院, 2023:11-13.
SONG Zubang. Preparation and properties of thermoplastic polyurethane / graphene / carbon nanotube flexible sensors[D]. Fujian: Fujian University of Technology, 2023:11-13.
[20] 戈成彪. 微孔热塑性聚氨酯泡沫结构调控与性能研究[D]. 北京: 中国科学院大学, 2018:30-35.
GE Chengbiao. Study on structure regulation and properties of microporous thermoplastic polyurethane foam[D]. Beijing: University of Chinese Academy of Sciences, 2018:30-35.
[1] 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86.
[2] 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134.
[3] 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10.
[4] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[5] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[6] 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164.
[7] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[8] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[9] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[10] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[11] 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
[12] 崔俊杰 徐旭凡 马辉. 多孔绵材料层对防水透湿复合织物性能的影响[J]. 纺织学报, 2016, 37(11): 55-58.
[13] 霍瑞亭;顾振亚;赵广明;左凯杰. 织物增强型聚偏氟乙烯微孔膜的制备[J]. 纺织学报, 2007, 28(12): 24-26.
[14] 黄机质.;张建春;王锋. 防护服用聚四氟乙烯复合膜的结构和性能[J]. 纺织学报, 2006, 27(9): 78-80.
[15] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!