纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 28-36.doi: 10.13475/j.fzxb.20240805401

• 纤维材料 • 上一篇    下一篇

四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响

朱雷1, 李晓俊2, 程春祖1,2(), 徐纪刚1,2, 杜心宇2   

  1. 1 东华大学 材料科学与工程学院, 上海 201620
    2 中国纺织科学研究院有限公司 生物基纤维材料全国重点实验室, 北京 100025
  • 收稿日期:2024-08-28 修回日期:2025-01-06 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 程春祖(1984—),男,正高级工程师。主要研究方向为生物源纤维及其工程化。E-mail:chunzuc@163.com
  • 作者简介:朱雷(1998—),男,硕士生。主要研究方向为海藻纤维制备及应用。

Influences of sodium tetraborate/tannic acid cross-linking on structure and properties of calcium alginate fibers

ZHU Lei1, LI Xiaojun2, CHENG Chunzu1,2(), XU Jigang1,2, DU Xinyu2   

  1. 1 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2 National Key Laboratory of Bio-based Fiber Materials, China Textile Academy, Beijing 100025, China
  • Received:2024-08-28 Revised:2025-01-06 Published:2025-07-15 Online:2025-08-14

摘要:

为改善海藻酸钙(CA)纤维的耐盐性、耐洗涤性和力学性能,以单宁酸(TA)、四硼酸钠(STB)及其组合物为交联剂,通过浸渍法制备了不同种类交联剂的海藻酸钙纤维,借助红外光谱仪、X射线衍射仪、热重分析仪、扫描电子显微镜,并通过吸湿保湿性测试、耐盐耐洗涤性测试、力学性能测试等对纤维的结构和性能进行表征。结果表明:TA和STB均能够抑制纤维在含金属离子溶液中的钙钠离子交换,TA能够提高CA纤维的结晶度、增强分子间氢键作用,提高CA纤维的强度,STB能够提高CA纤维的断裂伸长和耐洗稳定性,通过TA和STB组合交联CA成功构建了硼酸盐共价键-单宁酸螯合作用-氢键协同交联网络,使得海藻酸钙纤维的断裂强度提升27.18%、断裂伸长率提升7.48%,经生理盐水和洗涤溶液处理后纤维的形貌和尺寸变化不大,其耐盐性和耐洗涤性能显著提高。

关键词: 生物基纤维, 海藻酸钙纤维, 四硼酸钠, 单宁酸, 交联网络, 耐盐耐洗涤性, 力学性能

Abstract:

Objective Calcium alginate fiber has poor mechanical properties and saline stability, which seriously limits its application in textile and garment fields. Most of the studies achieved the performance enhancement of calcium alginate fibers by chemical treatment of sodium alginate spinning stock solution and coagulation bath, and fewer studies related to direct cross-linking treatment of calcium alginate fibers. This paper introduces an effort to overcome the performance defects of calcium alginate fibers by impregnating them with cross-linking agents.

Method Calcium alginate (CA) fibers with different cross-linking types were prepared by impregnation method, and the structure and properties of the fibers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and optical microscopy (POM) moisture absorption and retention test, salt resistance and washing resistance test, and mechanical properties test.

Results Sodium tetraborate (STB) is bonded to calcium alginate (CA) macromolecules through B—O covalent bonds, effectively improving the saline and washing stability of CA fibers. Tannic acid (TA) was employed to regulate the calcium ion cross-linking between CA macromolecules through its chelating action with calcium ions in CA, indirectly enhancing the coordinated action of CA macromolecules through the strong hydrogen bond between phenolic hydroxyl groups and CA. These two actions, while improving the stability of CA fibers, also more effectively improved the mechanical properties of CA fibers. By combining STB and TA to cross-link CA successfully, a synergistic cross-linking network of ″borate covalent bond-tannic acid chelation-hydrogen bond″ was formed. On the one hand, it dispersed STB and promoted the cross-linking effect of STB on CA more effectively. On the other hand, it positioned TA and promoted the enhancement of strong hydrogen bond coordination between CA macromolecules more effectively, achieving a significant improvement in the tensile strength and elongation at break of CA fibers. As a result, the breaking strength of calcium alginate fibers was increased by 27.18% and the elongation at break by 7.48%, thereby achieving a significant improvement in the saline and washing stability and mechanical properties of CA fibers.

Conclusion Both TA and STB inhibit the calcium-sodium ion exchange of the fibers in metal ion-containing solution. TA improves the crystallinity of CA fibers, enhances the intermolecular hydrogen bonding, and increases the strength of CA fibers, while STB improves the elongation at break and the washing stability of CA fibers. Through the combination of TA and STB crosslinking CA, a synergistic crosslinking network of “borate covalent bonding-tannic acid-hydrogen bonding” was successfully constructed, which increased the breaking strength of calcium alginate fibers by 27.18% and the elongation at break by 7.48%, and the morphology and size of the fibers did not change much after being treated with saline and washing solution, and the saline resistance and washing resistance were significantly improved.

Key words: bio-based fiber, calcium alginate fiber, sodium tetraborate, tannic acid, cross-linking network, salt and washing resistance, mechanical property

中图分类号: 

  • TQ341.5

图1

STB/TA/CA纤维的制备流程"

图2

交联剂和纤维的红外光谱"

图3

纤维的交联机制"

图4

纤维的X射线衍射谱图"

图5

CA、TA/CA、STB/CA、STB/TA/CA纤维表面和截面的SEM照片"

图6

CA、TA/CA、STB/CA、STB/TA/CA纤维的热重曲线和一阶热重微分曲线"

表1

CA、STB/CA、TA/CA、STB/TA/CA纤维在不同温度时的质量损失率"

纤维种类 m75/% m190/% Tm/℃ m350/% m600/%
CA 5.83 16.62 258 50.85 63.67
STB/CA 6.11 16.97 268 49.25 63.77
TA/CA 5.81 15.59 259 49.93 62.23
STB/TA/CA 5.56 16.12 262 49.50 62.36

图7

CA、STB/CA、TA/CA、STB/TA/CA纤维在密闭容器中的吸湿率和保湿率"

图8

CA、STB/CA、TA/CA、STB/TA/CA纤维在溶液中的溶胀度和直径溶胀率"

图9

纤维在不同溶液中浸泡后的SEM照片"

图10

CA、STB/CA、TA/CA、STB/TA/CA纤维的断裂强度和断裂伸长率"

[1] ZHANG Xiaolin, WANG Xinran, FAN Wei, et al. Fabrication, property and application of calcium alginate fiber: a review[J]. Polymers, 2022, 14(15): 3227-3244.
[2] CHEN Hao, GAO Yang, REN Xiuyan, et al. Alginate fiber toughened gels similar to skin intelligence as ionic sensors[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116018.
[3] 张岩峰, 张琨, 王闯, 等. 海藻酸钙基凝胶电解质用于纤维超级电容器的连续化制备[J]. 高分子学报, 2024, 55(3): 287-295.
ZHANG Yanfeng, ZHANG Kun, WANG Chuang, et al. Calcium alginate based gel electrolyte for continuous preparation of fiber supercapacitor[J]. Acta Polymerica Sinica, 2024, 55(3): 287-295.
[4] LIU Yun, ZHANG Chuanjie, ZHAO Jinchao, et al. Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior[J]. Carbohydrate Polymers, 2016, 139: 106-114.
doi: 10.1016/j.carbpol.2015.12.044 pmid: 26794953
[5] JOHNSTON D, KUNAR P, CHOONARA Y E, et al. Modulation of the nano-tensile mechanical properties of co-blended amphiphilic alginate fibers as oradurable biomaterials for specialized biomedical application[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 23: 80-102.
doi: 10.1016/j.jmbbm.2013.03.026 pmid: 23665485
[6] CI Meiyu, LIU Jie, SHANG Shenglong, et al. The effect of HPMC and CNC on the structure and properties of alginate fibers[J]. Fibers and Polymers, 2020, 21(10): 2179-2185.
doi: 10.1007/s12221-020-1264-z
[7] QI Xiulei, LIU Yide, YU Lei, et al. Versatile liquid metal/alginate composite fibers with enhanced flame retardancy and triboelectric performance for smart wearable textiles[J]. Advanced Science, 2023. DOI: 10.1002/advs.202303406.
[8] XIE Hongxia, XIA Haoyang, HUANG Lin, et al. Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized cellulose-sodium alginate composite sponges for accelerated wound healing[J]. International Journal of Biological Macromolecules, 2021, 191: 27-39.
doi: 10.1016/j.ijbiomac.2021.09.047 pmid: 34534578
[9] KUMAR I A, VISWANATHAN N. Fabrication of metal ions cross-linked alginate assisted biocomposite beads for selective phosphate removal[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1438-1446.
[10] JIAO Chenlu, LI Tingting, WANG Jian, et al. Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel[J]. Journal of Polymers and the Environment, 2020, 28(5): 1492-1502.
[11] LI Zheng, GUO Jing, GUAN Fucheng, et al. Oxidized sodium alginate cross-linked calcium alginate/antarctic krill protein composite fiber for improving strength and water resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. DOI: 10.1016/j.colsurfa.2022.130317.
[12] WASUPALLI G K, VERMA D. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes[J]. International Journal of Biological Macromolecules, 2018, 114: 10-17.
doi: S0141-8130(17)34712-8 pmid: 29551510
[13] KIM Y J, YOON K J, KO S W. Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde[J]. Journal of Applied Polymer Science, 2000, 78(10): 1797-1804.
[14] ZHANG Rui, GUO Jing, WU Jing, et al. Preparation, characterization and properties of high-salt-tolerance sodium alginate/krill protein composite fibers[J]. Fibers and Polymers, 2018, 19(5): 1074-1083.
[15] ZHENG Chenglin, SUN Yaping, CUI Yuewei, et al. Superhydrophobic and flame-retardant alginate fabrics prepared through a one-step dip-coating surface-treatment[J]. Cellulose, 2021, 28(9): 5973-5984.
[16] 夏延致, 田星, 王兵兵, 等. 耐盐、耐洗涤剂海藻纤维的制备方法:201810978980.0[P]. 2019-01-08.
XIA Yanzhi, TIAN Xing, WANG Bingbing, et al. Preparation method of salt-tolerant and detergent-resistant seaweed fiber: 201810978980.0[P]. 2019-01-08.
[17] 田星, 徐为, 沙源, 等. 耐盐耐洗涤剂海藻纤维的制备及性能[J]. 高分子材料科学与工程, 2020, 36(1): 147-151, 158.
TIAN Xing, XU Wei, SHA Yuan, et al. Preparation and properties of salt-tolerant and detergent-resistant alginate fiber[J]. Polymer Materials Science & Engineering, 2020, 36(1): 147-151, 158.
[18] LIAO Minjian, ZHAO Yanyan, PAN Yue, et al. A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings[J]. Journal of Materials Science, 2023, 58(13): 5756-5772.
[19] TIAN Xiuxiu, ZHU Haishan, MENG Xiao, et al. Amphiphilic calcium alginate carbon aerogels: broad-spectrum adsorbents for ionic and solvent dyes with multiple functions for decolorized oil-water separa-tion[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12755-12767.
[20] 陶蔻蔻, 施霄宇, 孙思宇, 等. 聚(对苯乙烯磺酸钠)/单宁酸/海藻酸钠三元复合水凝胶球对磷酸氯喹的高效吸附去除[J]. 中国科学:化学, 2024, 54(6): 935-949.
TAO Koukou, SHI Xiaoyu, SUN Siyu, et al. Efficiently adsorptive removal of chloroquine phosphate by poly(sodium p-styrenesulfonate)/tannic acid/sodium alginate ternary composite hydrogel bead[J]. Scientia Sinica Chimica, 2024, 54(6): 935-949.
[21] ZHANG Xiumei, LIU Kejun, QIN Miao, et al. Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial proper-ties[J]. Carbohydrate Polymers, 2023. DOI: 10.1016/j.carbpol.2023.120702.
[22] 刘春晖, 钱小磊, 张智朝, 等. 一种耐洗涤海藻纤维及其制备方法: 202210107490.X[P]. 2022-04-29.
LIU Chunhui, QIAN Xiaolei, ZHANG Zhichao, et al. Wash-resistant seaweed fiber and preparation method thereof: 202210107490.X[P]. 2022-04-29.
[23] ZHANG Chenyan, JIANG Yuan, ZOU Xinquan, et al. Biomass-based ferric tannate hydrogel with a photothermal conversion function for solar water evaporation[J]. ACS Applied Polymer Materials, 2023, 5(11): 9574-9584.
[24] 袁丛辉, 黄俊文, 戴李宗, 等. 一种聚乙烯醇-单宁酸-硼酸三元交联水凝胶、制备方法及应用: 201910818212.3[P]. 2021-04-20.
YUAN Conghui, HUANG Junwen, DAI Lizong, et al. Polyvinyl alcohol-tannic acid-boric acid ternary cross-linked hydrogel, preparation method and application: 201910818212.3[P]. 2021-04-20.
[1] 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45.
[2] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[3] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[4] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[5] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[6] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[7] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[8] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
[9] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[10] 刘婷, 闫涛, 潘志娟. 香蕉茎秆纤维/抗菌纤维混纺纱的制备及其性能[J]. 纺织学报, 2024, 45(10): 48-54.
[11] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[12] 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15.
[13] 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9.
[14] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[15] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!