纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 46-56.doi: 10.13475/j.fzxb.20241206601
李雨洁1,2, 王承勤1,2, 王伟3, 袁如超1,2, 俞建勇2, 李发学1,2(
)
LI Yujie1,2, WANG Chengqin1,2, WANG Wei3, YUAN Ruchao1,2, YU Jianyong2, LI Faxue1,2(
)
摘要: 为解决现有聚酰胺6基弹性纤维强度不高、弹性不足、难以满足弹性纺织品应用要求的问题,从本征弹性(嵌段共聚改性)与形态弹性(并列复合纺丝)结合的角度制备了PA6基并列纤维f(PA6/TPAEE6)。首先开发高强度的聚醚酯酰胺6热塑性弹性体(TPAEE6),借助核磁共振氢谱(1H NMR)、傅里叶红外光谱(FT-IR)、凝胶渗透色谱(GPC)、相对黏度、动态热力学分析(DMA)、广角X射线衍射(WAXD)、小角X射线散射(SAXS)、热失重(TGA)、差示扫描量热法(DSC)和拉伸测试分析了TPAEE6的分子结构、相态结构和热力学性能。结果表明:TPAEE6的软、硬链段通过酯键成功相连;TPAEE6具有较高的分子量;双重玻璃化转变和散射峰的变化展示出TPAEE6优异的微相分离结构;TPAEE6的断裂强度为23~47 MPa,断裂伸长率为373%~758%。将其与PA6并列熔融纺丝,得到的并列弹性纤维f(PA6/TPAEE6)断裂强度可达3.12 cN/dtex,高于现有研究的PA6基并列弹性纤维与商业弹力丝T400(2.44 cN/dtex),在定伸长5%~20%下弹性回复率与弹性持久性均优于T400,为弹性纤维市场提供了更多选择。
中图分类号:
| [1] | 郎嘉瑞. 聚酰胺基并列复合纤维的制备及其性能研究[D]. 上海: 东华大学, 2023: 56. |
| LANG Jiarui. Preparation and properties of polyamide parallel composite fibers[D]. Shanghai: Donghua University, 2023: 56. | |
| [2] | 杨倩. PA/TPAE偏心皮芯复合纤维的制备和性能研究[D]. 杭州: 浙江理工大学, 2023: 39-51. |
| YANG Qian. Preparation and properties of PA/TPAE eccentric sheath-core composite fibers[D]. Hangzhou: Zhejiang Sci-tech University, 2023: 39-51. | |
| [3] |
YUAN R, FAN S, WU D, et al. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization[J]. Polymer Chemistry, 2018, 9(11): 1327-1336.
doi: 10.1039/C8PY00068A |
| [4] |
INOUE M. Studies on crystallization of high polymers by differential thermal analysis[J]. Journal of Polymer Science Part A: General Papers, 1963, 1(8): 2697-2709.
doi: 10.1002/pol.10.v1:8 |
| [5] |
JIANG J, TANG Q, PAN X, et al. Facile synthesis of thermoplastic polyamide elastomers based on amorphous polyetheramine with damping performance[J]. Polymers, 2021, 13(16): 2645.
doi: 10.3390/polym13162645 |
| [6] | CHI D, LIU F, NA H, et al. Poly(neopentyl glycol 2,5-furandicarboxylate): a promising hard segment for the development of bio-based thermoplastic poly(ether-ester) elastomer with high performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9893-9902. |
| [7] |
CHEN J, GONG C, YANG C, et al. Flexible preparation of polyamide-6 based thermoplastic elastomers via amide exchange[J]. Journal of Materials Science, 2021, 56: 12018-12029.
doi: 10.1007/s10853-021-06057-z |
| [8] |
HO J C, WEI K H. Induced γ→α crystal transformation in blends of polyamide 6 and liquid crystalline copolyester[J]. Macromolecules, 2000, 33(14), 5181-5186.
doi: 10.1021/ma991702f |
| [9] |
RAMESH C, GOWD E B. High-temperature x-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6[J]. Macromolecules, 2001, 34(10): 3308-3313.
doi: 10.1021/ma0006979 |
| [10] |
YU Y C, JO W H. Segmented block copolyetheramides based on nylon 6 and polyoxypropylene: II: structure and properties[J]. Journal of Applied Polymer Science, 1995, 56(8): 895-904.
doi: 10.1002/app.07.v56:8 |
| [11] |
TODROS S, NATALI A N, PACE G, et al. Correlation between chemical and mechanical properties in renewable poly(ether-block-amide)s for biomedical applications[J]. Macromolecular Chemistry and Physics, 2013, 214(18): 2061-2072.
doi: 10.1002/macp.v214.18 |
| [12] |
JIANG Q, YANG C C, LI J C. Size-dependent melting temperature of polymers[J]. Macromolecular Theory and Simulations, 2003, 12(1): 57-60.
doi: 10.1002/mats.v12:1 |
| [13] | 袁如超. 热塑性弹性体及其纤维的制备与结构性能研究[D]. 上海: 东华大学, 2020: 41. |
| YUAN Ruchao. Fabrication and properties of thermoplastic elastomers and corresponding elastic fibers[D]. Shanghai: Donghua University, 2020: 41. | |
| [14] | SAIANI A, DAUNCH W A, VERBEKE H, et al. Origin of multiple melting endotherms in a high hard block content polyurethane: 1: thermodynamic investigation[J]. Macromolecules, 2001.DOI:10.1021/mao105993. |
| [15] |
KROL P. Synthesis methods, chemical structures and phase structures of linear polyurethanes: properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers[J]. Progress in Materials Science, 2007, 52(6): 915-1015.
doi: 10.1016/j.pmatsci.2006.11.001 |
| [16] |
BIEMOND G J E, FEIJEN J, GAYMANS R J. Poly(ether amide) segmented block copolymers with adipic acid based tetraamide segments[J]. Journal of Applied Polymer Science, 2007, 105(2): 951-963.
doi: 10.1002/app.v105:2 |
| [17] |
LIU Y, ZHAO R, LIU Y, et al. Flexible preparation of PA6-based thermoplastic elastomer filaments with enhanced elasticity, melt spinnability and transparency enabled by high-molecular-weight soft segments[J]. Polymer Chemistry, 2023, 14, 4352-4361.
doi: 10.1039/D3PY00489A |
| [18] |
ZHANG S, WANG K, SANG S, et al. Study on properties of polyurethane elastomers prepared with different hard segment structure[J]. Journal of Applied Polymer Science, 2022, 139(27): e52479.
doi: 10.1002/app.v139.27 |
| [19] | 刘雅丽, 袁如超, 俞建勇, 等. PA6/PBTE并列复合弹性纤维的制备及其性能研究[J]. 东华大学学报(自然科学版), 2024: 1-10. |
| LIU Yali. Preparation of PA6/PBTE side-by-side composite elastic fibers and study of their proper-ties[J]. Journal of Donghua University(Natural Science), 2024: 1-10. | |
| [20] |
ZHU M, LIU Y, SUN B, et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation[J]. Macromolecular Rapid Communications, 2006 27(13): 1023-1028.
doi: 10.1002/marc.v27:13 |
| [1] | 张梦茹, 王灿, 肖汪洋, 廖梦蝶, 王秀华. 聚醚酯弹性纤维的制备及其结构与性能[J]. 纺织学报, 2024, 45(08): 81-88. |
| [2] | 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27. |
| [3] | 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(03): 45-50. |
| [4] | 李丹丹 权利军 金肖克 田伟 祝成炎. 氨纶与双组分复合长丝/棉包芯纱的拉伸弹性[J]. 纺织学报, 2017, 38(05): 31-36. |
| [5] | 冯志红.;朱良均;闵思佳;蔡杰;吕洁. 高弹高保暖丝绵的性能[J]. 纺织学报, 2007, 28(4): 22-25. |
| [6] | 李慧;王府梅. PTT织物与棉氨包芯纱织物的弹性比较[J]. 纺织学报, 2005, 26(3): 32-34. |
| [7] | 殷英贤;王懽;张建春;郭玉海. 聚四氟乙烯-聚氨酯复合膜的工艺探讨[J]. 纺织学报, 2004, 25(04): 36-37. |
|
||