纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 57-65.doi: 10.13475/j.fzxb.20241105401

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能

毛泽1, 高俊1, 凌磊1, 武丁胜1, 陶云1, 张春2, 李申2, 凤权1()   

  1. 1.安徽工程大学 安徽省先进纤维材料工程研究中心, 安徽 芜湖 241000
    2.江苏久吾高科技股份有限公司, 江苏 南京 211800
  • 收稿日期:2024-11-25 修回日期:2025-06-13 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 凤权(1975—),男,教授,博士。主要研究方向为功能性纤维膜的制备。E-mail: fengquan@ahpu.edu.cn
  • 作者简介:毛泽(2000—),男,硕士生。主要研究方向为功能性纤维膜的制备。
  • 基金资助:
    安徽省自然科学基金项目(2208085QE139);安徽省重点研发项目(2022107020006);安徽省先进纤维材料工程研究中心项目(2023AFMC17)

Preparation and Cr6+ adsorption of polyacrylonitrile/polypyrrole nanofiber membrane

MAO Ze1, GAO Jun1, LING Lei1, WU Dingsheng1, TAO Yun1, ZHANG Chun2, LI Shen2, FENG Quan1()   

  1. 1. Advanced Fiber Materials Engineering Research Center, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Jiangsu JIUWU HI-TECH Co., Ltd., Nanjing, Jiangsu 211800, China
  • Received:2024-11-25 Revised:2025-06-13 Published:2025-09-15 Online:2025-11-12

摘要: 针对六价铬离子(Cr6+)具有高毒性且难去除的问题,采用静电纺丝和原位氧化的方法制备聚丙烯腈/聚吡咯(PAN/PPy)纳米纤维膜。对PAN/PPy纳米纤维膜的形貌和结构进行表征,并探究其吸附性能和吸附行为。结果表明:PAN/PPy纳米纤维膜被成功制备,在温度为318 K、pH为2、Cr6+质量浓度为100 mg/L时,PAN/PPy纳米纤维膜达到最佳吸附容量(91.3 mg/g)。吸附等温线证实PAN/PPy纳米纤维膜对Cr6+吸附符合Langmuir吸附等温模型,说明PAN/PPy纳米纤维膜对Cr6+是单分子层吸附;吸附热力学结果表明,吸附过程是非自发的吸热反应;吸附动力学符合准二级动力学,属于化学吸附。PAN/PPy纳米纤维膜对Cr6+具有一定的还原能力,其中约41.3%的Cr6+被还原为Cr3+,且具有良好的可重复使用性能。

关键词: 铬, 聚丙烯腈, 聚吡咯, 纳米纤维膜, 吸附性能, 静电纺丝

Abstract:

Objective Heavy metal ions (Cr6+ as an example) are highly toxic and difficult to remove from wastewater, causing serious environmental problems. Many reported nanoparticle adsorbents show good effects, but are inconvenient for recycling and reuse, limiting the application of specific scenarios. Therefore, it is of great significance to develop adsorbents that could be reused as well as having good adsorption effect.

Method Polyacrylonitrile/polyaniline (PAN/PPy) nanofiber membrane were prepared by electrospinning and in-situ oxidation using polyacrylonitrile and pyrrole as raw materials. PAN/PPy nanofibers membrance were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD) and Fourier transform infrared (FT-IR)spectrometer. Tensile performance and hydrophilicity were evaluated using tensile testing equipment and water contact angle (WCA) measuring instrument, respectively. The influences of different factors (temperature, pH value and Cr6+ concentration) on the adsorption properties of PAN/PPy nanofiber membrane were investigated, and the adsorption isotherm, adsorption thermodynamics and adsorption kinetics of PAN/PPy nanofibers membrance were analyzed.

Results The SEM images showed that the fiber surface changed from smooth to rough with pyrrole growth. The (110) crystal system of PAN appeared at 2θ=17°, the amorphous peak of PPy appeared at 2θ=24°, the characteristic peak of C≡N appeared at 2 243 cm-1 in the FT-IR spectra, and the characteristic peak appeared at 811 and 920 cm-1 as the tensile vibration of C—H. The characteristic peaks at 1 487 and 1 558 cm-1 correspond to the tensile vibration of C=C, and the peaks at 1 685 and 1 315 cm-1 represent the vibration of C=N and C—N, respectively. SEM, XRD and FT-IR results demonstrated the successful preparation of PAN/PPy nanofibers membrane. PAN/PPy nanofiber membrane exhibited good mechanical properties (stress 4.3 MPa, strain 41.8%, elastic modulus 9.824 MPa) and hydrophilicity (water contact angle reduced from 132.3° to 40.4°). The adsorption results showed that the adsorption performance of PAN/PPy nanofiber membrane for Cr6+ increased with the rise of temperature, and decreased with the increase of pH value, because the protonated amino group decreased with the increase of pH value. Under the conditions of Cr6+ concentration of 100 mg/L, pH=2 and 318 K, the adsorption of PAN/PPy nanofiber membrane on Cr6+ reached 91.3 mg/g. The adsorption isotherm, adsorption thermodynamics and adsorption kinetics of PAN/PPy nanofibers membrane were fitted to analyze the adsorption behavior of Cr6+ by the experimental data. The results showed that the adsorption isotherm was consistent with the Langmuir model, indicating that it was monolayer adsorption.The adsorption thermodynamics showed that the adsorption of Cr6+ by PAN/PPy nanofiber membrane is a non-spontaneous endothermic reaction. The fitting of adsorption kinetics accorded with pseudo-second-order kinetics, indicating that chemisorption plays an dominant role in the adsorption process. XPS analysis results showed that about 41.3% of Cr6+ was reduced to Cr3+. The investigation also showed that after repeated use for five cycles, more than 60% adsorption was maintained compared to the adsorption result of the first use, suggesting good reusable performance.

Conclusion PAN/PPy nanofiber membrane was prepared by electrospinning and in situ oxidation for adsorption and reduction of Cr6+in wastewater. The PAN/PPy nanofiber membrane successfully prepared has good mechanical properties and hydrophilicity. Under the conditions of pH=2, 318 K and Cr6+ concentration of 100 mg/L, the optimal adsorption performance was 91.3 mg/g. The adsorption of Cr6+ by PAN/PPy nanofiber membrane is a single molecular layer adsorption, beloning to a non-spontaneous endothermic reaction, in which chemisorption plays an important role. PAN/PPy nanofiber membrane has good reducing properties and show satisfactory reusability.

Key words: chromium, polyacrylonitrile, polypyrrole, nanofiber membrane, adsorption performance, electrospinning

中图分类号: 

  • TQ340.64

图1

纳米纤维膜的SEM照片"

图2

PAN和PAN/PPy纳米纤维膜的XRD图谱"

图3

PAN和PAN/PPy纳米纤维膜的红外光谱"

表1

不同样品的力学性能和亲水性能"

样品
名称
断裂
应力/MPa
断裂
应变/%
弹性模
量/MPa
接触角/
(°)
PAN 33.1 55.7 1.7 132.3
PAN/PPy 4.3 41.8 9.8 40.4

表2

温度对不同样品的吸附性能影响"

样品
名称
不同温度下吸附量/(mg·g-1)
298 K 308 K 318 K
PAN 21.5 29.4 29.8
PAN/PPy 41.7 44.2 46.0

图4

pH值对PAN/PPy纳米纤维膜的Cr6+吸附性能影响"

图5

吸附等温线"

表3

吸附等温模型参数"

温度/K Langmuir Freundlich
298 Qm=76.03 mg/g
KL=0.012 5 L/mg
R2=0.995
KF=58.26 mg(1-n)·Ln/g
n=0.070 3
R2=0.925
308 Qm=84.89 mg/g
KL=0.011 8 L/mg
R2=0.995
KF=61.87 mg(1-n)·Ln/g
n=0.080 0
R2=0.924
318 Qm=91.31 mg/g
KL=0.011 1 L/mg
R2=0.999
KF=72.24 mg(1-n)·Ln/g
n=0.071 6
R2=0.849

图6

吸附热力学"

表4

吸附热力学参数"

温度/
K
Qm/
(mg·
g-1)
KL/
(L·
mg-1)
ΔG/
(kJ·
mol-1)
ΔH/
(kJ·
mol-1)
ΔS/
(J·
K-1)
298 1.050 6 0.013 2 10 852.83 588.586 4 -6.358 96
308 1.013 7 0.011 8 11 408.04
318 0.990 2 0.011 0 11 909.02

图7

吸附动力学"

表5

吸附动力学参数"

质量浓度/(mg·L-1) 准一级 准二级
50 Qe=55.47 mg/g
k1=0.003 96 min-1
R2=0.852
Qe=60.20 mg/g
k2=0.003 96 g/(mg·min)
R2=0.999
70 Qe=69.93 mg/g
k1=0.004 54 min-1
R2=0.937
Qe=74 mg/g
k2=0.003 96 g/(mg·min)
R2=0.999
100 Qe=82.10 mg/g
k1=0.004 74 min-1
R2=0.966
Qe=114.10 mg/g
k2=0.003 96 g/(mg·min)
R2=0.999

图8

XPS图谱"

图9

PAN/PPy的重复使用性能"

[1] ZHOU Jianhua, DU Xiaosen, LU Kai, et al. MXene@polydopamine/oxidized sodium alginate modified collagen composite aerogel as sustainable bio-adsorbent for heavy metal ion adsorption and solar driven water evapo-ration[J]. Separation and Purification Technology, 2025. DOI: 10.1016/j.seppur.2024.129045.
[2] PANJALAK Meetam, KUNLARAT Phonlakan, SUPINYA Nijpanich, et al. Chitosan-grafted hydrogels for heavy metal ion adsorption and catalytic reduction of nitroaromatic pollutants and dyes[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2023.128261.
[3] LI Wenbin, GUO Mengting, WANG Yinfei, et al. Selective adsorption of heavy metal ions by different composite-modified semi-carbonized fibers[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.125022.
[4] SHAKTI Katiyar, RAJESH Katiyar. A comprehensive review on synthesis and application of nanocomposites for adsorption of chromium: status and future pros-pective[J]. Applied Water Science, 2024. DOI: 10.1007/s13201-023-02062-6.
[5] DRISS Mazkad, AYOUB El Idrissi, SALAH Eddine Marrane, et al. An innovative diatomite-polypyrrole composite for highly efficient Cr(VI) removal through optimized adsorption via surface response method-ology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. DOI: 10.1016/j.colsurfa.2024.133172.
[6] MAO Ze, WU Dingsheng, SARKODIE Bismark, et al. Scalable, acid-resistant polyaniline deposited amidoxime PAN nanofibers for efficient adsorption and detoxification of Cr (VI) wastewater[J]. Journal of Environmental Chemical Engineering, 2024. DOI: 10.1016/j.jece.2024.113153.
[7] POLEPALLE Thiripelu, JAGADEESAN Manjunathan, MEYYAPPAN Revathi, et al. Removal of hexavalent chromium from electroplating wastewater by ion-exchange in presence of Ni(II) and Zn(II) ions[J]. Journal of Water Process Engineering, 2024. DOI: 10.1016/j.jwpe.2024.104815.
[8] 裴宇翔, 张阳, 张淏泉, 等. 纤维素氨基甲酸酯/MoS2分离膜的制备及光催化还原Cr(Ⅵ)研究[J]. 离子交换与吸附, 2021, 37(3): 207-219.
PEI Yuxiang, ZHANG Yang, ZHANG Haoquan, et al. Preparation of cellulose carbamate/molybdenum disulfide composite membrane for photocatalytic reduction of Cr(VI)[J]. Ion Exchange and Adsorption, 2021, 37(3): 207-219.
[9] LI Diandi, HE Haijun, XU Zhongxuan, et al. Investigation on the effect of Cu2+, Mn2+ and Fe3+ on biotreatment of Cr(VI) by Shewanella oneidensis and Bacillus subtilis in bimetallic system[J]. Surfaces and Interfaces, 2024. DOI: 10.1016/j.surfin.2023.103742.
[10] LI Ningning, GU Junhong, LIU Zhi, et al. New insight into multi-functional MOG@COP/SA beads for co-adsorption and mono-detection in CTC-Cr(Ⅵ) co-contamination system and efficient anti-counterfeiting[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.154243.
[11] RACHID El Kaim Billah, MD Aminul Islam, MAZEN K Nazal, et al. A novel glutaraldehyde cross-linked chitosan@acid-activated bentonite composite for effective Pb(II) and Cr(VI) adsorption: experimental and theoretical studies[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.126094.
[12] LIU Yanan, GAO Yiman, SHI Hongpu, et al. Enhanced absorption capacity and fundamental mechanism of electrospun MIL-101(Cr)-NH2/PAN nanofibrous membranes for Mo(VI) removal[J]. Surfaces and Interfaces, 2024. DOI: 10.1016/j.surfin.2024.105192.
[13] 王杰, 汪滨, 杜宗玺, 等. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(Ⅵ)和Pb(Ⅱ)的吸附性能[J]. 纺织学报, 2020, 41(1): 1-7.
WANG Jie, WANG Bing, DU Zongxi, et al. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)[J]. Journal of Textile Research, 2020, 41(1): 1-7.
doi: 10.1177/004051757104100101
[14] 蒋达, 许倩倩, 吴雪兰, 等. 氨基功能化壳聚糖微球对Cr(VI)的吸附性能及其机理[J]. 高分子材料科学与工程, 2024, 40(1): 45-56.
JIANG Da, XU Qianqian, WU Xuelan, et al. Adsorption performance and mechanism of Cr(VI) by amino-functionalized chitosan microspheres[J]. Polymer Materials Science & Engineering, 2024, 40(1): 45-56.
[15] LI Lele, YANG Qinqin, SHI Yiling, et al. Polypyrrole-modified natural eggplant aerogel with high shape recovery for simultaneous efficient clean water generation and heavy metal ion adsorption from wastewater[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.125669.
[16] LAILA S Alqarni, JARI S Algethami, RACHID EL Kaim Billah, et al. A novel chitosan-alginate@Fe/Mn mixed oxide nanocomposite for highly efficient removal of Cr (VI) from wastewater: experiment and adsorption mechanism[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.129989.
[17] RAJESH Juturu, VYTLA Ramachandra Murty, RAJA Selvaraj. Efficient adsorption of Cr(VI) onto hematite nanoparticles: ANN, ANFIS modelling, isotherm, kinetic, thermodynamic studies and mechanistic insights[J]. Chemosphere, 2024. DOI: 10.1016/j.chemosphere.2023.140731.
[18] WANG Meng, CHEN Yingbo, ZHANG Yuanyuan, et al. Selective removal of Cr(VI) from solution by polyethyleneimine modified hydrochar loaded nanoscale zero-valent iron with high adsorption capacity[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.125150.
[19] AMNAH Mohammed Alsuhaibani, ABDULAZIZ A Alyyafi, LAMIA A Albedair, et al. Efficient fabrication of a composite sponge for Cr (VI) removal via citric acid cross-linking of metal-organic framework and chitosan: adsorption isotherm, kinetic studies, and optimization using Box-Behnken design[J]. Materials Today Sustainability, 2024. DOI: 10.1016/j.mtsust.2024.100732.
[20] SHREYA Kotnala, BRIJ Bhushan, ARUNIMA Nayak. Hydroxyapatite@cellulose@nZVI composite: fabrication and adsorptive removal of doxycycline, Cr(VI) and As(III) from wastewater[J]. Chemical Engineering Science, 2024. DOI: 10.1016/j.ces.2024.119796.
[21] PENG Yinyin, PAN Ting, CHEN Chuang, et al. In situ synthesis of NH2-MIL-53-Al/PAN nanofibers for removal Co(II) through an electrospinning process[J]. Langmuir, 2024, 40(5): 2567-2576.
doi: 10.1021/acs.langmuir.3c02837
[22] AASIM Hussain, RITA Kumari, FARHA Jabeen, et al. Ion beam irradiation induced modification of PPy/ZnO nanocomposite thin films for supercapacitor applic-ations[J]. Surfaces and Interfaces, 2024. DOI: 10.1016/j.surfin.2024.104647.
[23] DEEP S Sharma, AKASH P Patel, SAURABH S Soni, et al. Electrospun PbS/PAN-PANI carbon nanofibers decorated on carbon cloth as pseudo-electrochemical capacitor material[J]. ACS Applied Electronic Materials, 2024, 6(5): 3617-3629.
doi: 10.1021/acsaelm.4c00320
[24] DUAN Lijun, XU Jinhao, CAO Lingzhi, et al. Enhanced electrocatalytic performance of the FePt/PPy-C composite toward methanol oxidation[J]. ACS Applied Materials & Interfaces, 2024, 16(34): 44718-44727.
[25] TAYYBA Mukhtar, RANA Zafar Abbas Manj, IJAZ Ahmad Khan, et al. A prime synergistic BC@PPy flexible conductive matrix proposed candidate for boosting the breakthrough in smart e-textiles power supplies[J]. Materials Today Communications, 2024. DOI: 10.1016/j.mtcomm.2024.108208.
[26] GURPREET Kaur, AKASH Erick Toppo, GARIMA, et al. Synthesis of polypyrrole(PPy) functionalized halloysite nanotubes (HNTs): an electrochemical sensor for ibuprofen[J]. Applied Surface Science, 2024. DOI: 10.1016/j.apsusc.2023.159280.
[27] IBRAHIM Korkut, EBUBEKIR Siddik Aydin. Electrospun PAN-PS membranes with improved hydrophobic properties for high-performance oil/water separation[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.125590.
[28] LIANG Pei, LIU Sijia, LI Mei, et al. Effective adsorption and removal of Cr(VI) from wastewater using magnetic composites prepared by synergistic effect of polypyrrole and covalent organic frameworks[J]. Separation and Purification Technology, 2024. DOI: 10.1016/j.seppur.2023.126222.
[29] WANG Yueyang, JIN Mingzhu, LU Weiwei, et al. Recognizing adsorption of aqueous Cr (VI), As (III), Cd (II), and Pb (II) ions by amino groups hollow polymer adsorbent[J]. Journal of Environmental Chemical Engineering, 2024. DOI: 10.1016/j.jece.2023.111701.
[30] GAO Huihui, HAN Xiaoyu, WANG Rong, et al. Adsorption and catalytic degradation of bisphenol A and p-chlorophenol by magnetic carbon nanotubes[J]. Environmental Research, 2023. DOI: 10.1016/j.envres.2023.116314.
[31] TANG Qian, LI Nana, LU Qingchen, et al. Study on preparation and separation and adsorption performance of knitted tube composite β-cyclodextrin/chitosan porous membrane[J]. Polymers, 2019. DOI: 10.3390/polym11111737.
[32] HUANG Chong, MA Qiang, ZHOU Man, et al. Adsorption effect of oxalic acid-chitosan-bentonite composite on Cr6+ in aqueous solution[J]. Water, Air, & Soil Pollution, 2023. DOI: 10.1007/s11270-023-06543-x.
[33] LÜ Zepeng, ZHANG Huaku, LIU Chenhui, et al. Oxygen-bridged cobalt-chromium atomic pair in MOF-Derived cobalt phosphide networks as efficient active sites enabling synergistic electrocatalytic water splitting in alkaline media[J]. Advanced Science, 2024. DOI: 10.1002/advs.202306678.
[1] 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83.
[2] 王泓力, 张辉, 刘建宇, 尉海泽, 张雅宁, 王丽丽, 许学潮. 棉基生物炭-ZIF-L(Zn)-壳聚糖/聚丙烯复合膜的制备及其吸附-光催化性能[J]. 纺织学报, 2025, 46(09): 84-93.
[3] 刘健, 潘山山, 刘泳汝, 尹兆松, 任康佳, 赵庆浩. 多尖端锯齿状静电纺丝喷头的设计及优化[J]. 纺织学报, 2025, 46(08): 217-225.
[4] 马晓远, 包伟. 防水透湿纳米纤维复合织物研究现状及发展趋势[J]. 纺织学报, 2025, 46(08): 254-262.
[5] 时虎, 王赫, 王洪杰, 潘显苗. 多孔交联纳米纤维基超级电容器隔膜的设计[J]. 纺织学报, 2025, 46(08): 45-52.
[6] 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86.
[7] 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95.
[8] 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45.
[9] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[10] 丁圆, 赵云霞, 靳高岭, 杨涛, 徐静, 柯福佑, 陈烨. 阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能[J]. 纺织学报, 2025, 46(06): 168-177.
[11] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[12] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[13] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[14] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[15] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!